

Applications of data mining in modern maintenance

IAGT/NRC collaborative forum on *Challenges*and *Opportunities in Future Gas Turbine*October 20th, 2008

Sylvain Létourneau

Knowledge from data at the NRC's IIT

Help organizations maximize the benefits of the data that they collect

- perform scientific research in: machine learning, data mining, statistics, artificial intelligence, soft computing, information retrieval, information systems, and natural language processing
- preferred application areas: Equipment Health Management, Bioinformatics, Health, Web Mining
- today's talk limited to Equipment Health Management

Areas of contribution

- Data management
 - cleansing of data
 - storing data into data bases and data warehouses
 - providing secure and convenient access to the data
- Data-driven modeling, reasoning, and simulation
 - summarizing raw data into manageable information through statistics
 - extracting useful insights through data mining, statistics, machine learning,...
 - using learned models to enhance simulation and background knowledge
 - fusing information and automate/support decision making

Computing

- developing high performance computing platforms and tools to perform required computations
- Software tools
 - developing tools that integrate and streamline the data analysis process
 - developing software to put results from data analysis at work

Data warehouses for the various projects at NRC-IIT

Integrated Diagnostic System (IDS) - overview

Timeline

- 1991- thorough study of commercial aircraft maintenance and assessment of potential benefits of IT technologies to support decision making
- 1993- official start of the IDS project with partners such as Canadian Airlines, Air Canada, GE, Lockheed Martin, CMC, ...
- 1996- prototype installed at Air Canada for 3 month trial (lasted 3 years...) 69 aircraft (A320/319)
- 2000- commercialization

Scope and technologies

- uses of Artificial Intelligence (AI) techniques for diagnosis and recommendation of repair actions
- focuses on Air Canada's line technicians for A319/A320

NRC-CNRC Institute for Information Technology

Line technician's world

- aircraft at gate
- passenger offload
- snag recognition
- consult MEL
- consult TSM
- consult aircraft history
- carry out test (BITE)
- fault isolation (TSM)
- parts required?
- order parts
- rectification (AMM)
- certification

- While the aircraft is still in the air, IDS:
 - clusters relevant WRN, FLR, and snag (pilot) messages
 - identifies probable causes based on TSM and provide links to corresponding TSM pages
 - assesses MEL conditions (GO, NOGO, GOIF, ...)
 - displays relevant maintenance history
 - suggests fixes based on similar cases
- facilitates communication between staff from various departments

IDS - technologies

- Case-Based reasoning (CBR)
 - to identify FLR and WRN messages. Case-retrieval includes advanced string matching to compensate for data errors
 - to suggest repairs based on similar past experiences
- Rule-based reasoning
 - to represent knowledge contained in TSM manual. Development of tools to automatically generate these rules
 - to cluster FLR and WRN messages and identify of probable faults based-on TSM
 - to assess MEL condition
 - to aggregate information related with temporal proximity or textual similarity
- Appealing and efficient end user application interface

- Use sensor data, maintenance data, and domain information
- Two kinds of models:
 - component failure predictions
 - abnormal behavior detections

Data mining overview: definition and process

"Data mining (DM) is the process of discovering useful and previously unknown knowledge from historical or on-line data"

Data mining overview: modeling techniques

- Classification/prediction/trend analysis
 - classical statistics (discriminant analysis, time series analysis, etc.), decision and regression trees, (naïve) bayes, probabilistic networks (Bayesian networks/markov networks), artificial neural networks, fuzzy-logic, rule induction, k-nearest neighbor/case based reasoning, inductive logic programming, rough sets, genetic algorithms, evolutionary systems, ...
- Association
 association rules, inductive logic programming, ...
- Clustering
 - hierarchical and probabilistic cluster analysis, fuzzy cluster analysis, conceptual clustering, kohonen feature maps, ...
- Plus many hybrid methods
- Selection of techniques is done on a case by case basis according to types of modeling task and characteristics of the data

Data mining for health management: challenges

- Integration of time information
 - most data mining tools assume no order in observations
- Selection of relevant data
 - Several datasets and not all data from a given dataset is relevant for a given problem
- Processing for noise and contextual information
- Labeling of the data
 - Class parameter typically not given, it needs to be determined
- Evaluation of the models
 - Typical evaluation process and functions are not adequate
- Fusion of models
 - Often needs to integrate several models to achieve desired results

Data mining methodology for health management

Iterative process, main tasks:

retrieving past failures information data selection

data labeling feature extraction

building data mining models
leave-one batch out evaluation methodology
application specific scoring function

heterogeneous model stacking data mining learning of meta models

Example 1: predicting APU starter failures

- Objective predict A320 APU starter failures between 1 and 30 days in advance to avoid delays
- Illustration with a particular case

APU STARTER FAILURE AIRCRAFT 234 ON APRIL 4, 1995

the model should generate alerts in the target period before the failure

Example 1: predicting APU starter failures (2)

• Data

- 6 years of maintenance and APU sensor data; 5 years for building the models and the remaining year for evaluation (training/model building)
- 69 occurrences of starter replacements over first 5 years (64 from A320 and 5 from A319) and 17 in the remaining year (testing/model evaluation)
- Results (on testing data failures during the last year of the study)
 - A320: models generated alerts for 11 occurrences out of 12 (total of 113 alerts, 5 potential false alerts)
 - A319: models generated alerts for 2 occurrences out of 5 (total of 61 alerts, 27 good, and 34 to be validated)

These models could be used to avoid many delays at the gate

Example 2: predicting train wheel failures

- Train wheel failures:
 - account for more than 50% of train derailments
 - cause significant disruptions of railway operation: force changes in schedule, reduced throughput, cause delays
 - increase maintenance cost (\$65M /per year for wheel repairs)
 - reduce life of rail (5000 broken rails per year)
 - are more and more frequent due to increased load and speed
- Objective use IIT's data mining technology to predict wheel failures and avoid disruptions during operation
- Data maintenance data plus WILD (Wheel Impact Load Detector) data

Example 2: predicting train wheel failures (2)

WILD technology

- Output for each wheel: dynamic load, nominal weight, speed, direction
- 22 WILD sites located at strategic location on the Canadian railway network
- Current policy is to stop a train when impact > 140 kips

Example 2: predicting train wheel failures (3)

Result

Meta- Model Name	Version of Algorithms	Model Score	False Positive Rate	Problem Detection Rate
m_1^c	Decision trees	698.5	0.08	0.97
m_2^c	Decision trees with costMatrix	650.9	0.08	0.97
m_3^c	Naïve Bayes with costMatrix	643.4	0.12	0.98
m_4^c	Naïve Bayes	622.7	0.13	0.98

- good coverage and reasonable rate of false positives
- by comparison, threshold-based approaches
 - often fail to provide timely alerts
 - generate a much higher rate of false positives for a given detection rate
- simple methods are not feasible due to variability observed between wheel failure cases

Example 3: detection of abnormal behavior

 Objective detect abnormal behaviors in the operation of aircraft engines by closely monitoring key parameters for trends or sudden shift in performance

Data

- 5 years of Engine Cruise Reports from a Air Canada's fleet of A320
- monitoring of EGT, Fuel Flow, N1 vib, and N2 vib

Result

- AC 217 consumes too much fuel whatever engine you put on it
- over 1 yr, AC 217 consumes about \$207000 more in fuel than AC 223 (assuming 5hr crusing per day and \$0.31/kg of fuel)
- In 2000, Airbus diagnosed an airframe problem on that aircraft and performed major repairs...

Hybrid modeling: knowledge and data driven

- Data-driven approaches construct generalized models that capture the relationships between the input and output data of a given process
- Knowledge-driven or physics-based approaches construct models that try to explain the physics underlying a given process
- Why do we need both?
 - to help deal with lack of data or noise in the data
 - to help deal with lack of knowledge or build initial models for complex systems
- Examples of integration of knowledge in data-driven modeling:
 - train wheel failure predictions
 - normalization of load measurements based on speed and nominal weight
 - selection of sensor readings based-on expected propagation of impact due to wheel failures
 - aircraft engine health assessment
 - normalization of measurements based on generator load
 - understanding operating envelope under various conditions (compressor maps)

Software tools for model development and deployment

EBM3 system: environment for building models

Functionalities:

- streamline model building, deployment, and documentation process
- support for variety of application development environments
 - SAS, Java, R, Matlab, Perl...
- support for different computing environments
 - Windows, Linux, Parallel and Distributed Computing
- support integration of new techniques in the model building process
- support cooperative work

Experiments performed so far:

- time-to-failure estimation
- cost curve analysis
- export models to EDM3

Conclusion and practical considerations

- information technologies can help optimize maintenance (e.g., increase availability) by facilitating the integration and processing of huge amounts of data, knowledge, and expertise
- technology development/implementation requires:
 - an adequate business case and resources (data)
 - strong participation from end-users (operators)
 - adequate data
 - a multi-disciplinary and iterative approach
 - an open software environment that complies with industry standards to allow integration of systems, technologies, and data

Questions

- 1. How to foster the participation of operators in the development of health management technologies?
- 2. What are the barriers to data sharing and what could be done collectively to augment the quantity and quality of data available for technology development?