Paper No: 05-IAGT-1.8 INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE

Gas Turbines Efficiency in Project Development

by

Urban T. Ziegler

of Natural Resources Canada CANMET Energy Technology Centre - Varennes Quebec, Canada

Author

Urban T. Ziegler, M.Sc. P.Eng.

Urban Ziegler is a Senior Engineer with RETScreen International at CETC-Varennes and he is responsible for developing new models and software. Urban's expertise includes district energy, co-generation and biomass energy systems for commercial buildings, communities and all types of industries.

Urban has been working in the renewable energy and energy efficiency fields for over 25 years. Prior to joining CETC-Varennes, Urban worked as a consulting engineer for PEMtec, FVB Energy, AFE Engineering, and he was technical director for Universal Energy in England. He has performed many feasibility studies for community energy systems using both fossil fuel and biomass heating systems and he has performed numerous energy conservation studies and implemented savings measures in commercial and industrial buildings in England, Sweden and Canada. In addition, Urban was project manager for the biomass heated district energy system for Ouje-Bougoumou, Quebec and he has designed and overseen the installation of many energy systems elsewhere.

Urban received his Master of Science Technology – Civil and Structural Engineering from Chalmers Institute of Technology in Sweden and is a licensed Professional Engineer in Ontario.

Abstract

In developing gas turbine projects many factors needs to be assessed before a viable project is found. The efficiency of a gas turbine can be described in several ways and is affected by a variety of factors such as manufacturer, altitude, metrological conditions, etc. Efficiency (heat rate) is typically described using lower heating value (LHV), but in North America we purchase fuel and quote calorific values using higher heating value. For cogeneration projects the annual efficiency is also a factor that can have a big impact in the determination of project viability. This paper intends to describe the different types of efficiencies that are used and summarize the impact that efficiency has on in the prefeasibility and feasibility stage of the project development. The paper will use the RETScreen International's Combined Heat and Power model to evaluate a project development will also be discussed such as how a risk and sensitivity analysis can be used.

Table of Contents

Author	. 2
Abstract	. 3
Table of Contents	.4
Technical Paper	. 5
Introduction	. 5
Definition of efficiency	. 6
Heat rate for gas turbines	.7
Project definition, Cost and Financial analysis	12
Sensitivity and risk analysis	14
Greenhouse Gas (GHG) Emission Reduction.	15
Conclusion	16
References	17
Appendix	18

Technical Paper

Introduction

This paper deals with what should be considered during the pre-feasibility and feasibility stage of project development. Different impacts of efficiencies and their definitions will be discussed. What effect does project location have on the project viability, and is it needed to know the difference between higher and lower heating value. The calculations were all performed using the RETScreen CHP model.

The RETScreen International Clean Energy Project Analysis Software is a decision support tool developed with the contribution of numerous experts from government, industry, and academia. The software, provided free-of-charge, can be used world-wide to evaluate the energy production, life-cycle costs and greenhouse gas emission reductions for various types of energy efficient and renewable energy technologies. The software also includes product, cost and weather databases; and a detailed online user manual. In early July 2005 there were over 63,000 users world wide. The CHP model is available in 21 interchangeable languages. Various parts of the algorithm have been validated against other programs or against values published in the literature. Despite the simplicity of the model, the accuracy of the model proves acceptable, at least at the pre-feasibility stage, when compared with other software tools or with experimental data. All figures and tables were generated from the RETScreen model and the on-line help feature.

This paper will concentrate on a gas turbine with a HRSG, the fictitious project is an industry that operates 24/7 somewhere in Canada. Part of the load is weather dependent. The project configuration is shown in Figure 1 below.

Figure 1: Typical gas turbine schematic.

Definition of efficiency

Definition, for the following discussion Heat rate and Heat recovery efficiency is defined as in the in Figure 2.

Figure 2: CHP Plant Heat rate and Heat recovery efficiency.

Heat Rate is also used for tax calculations. The definition for the tax calculations are different as it looks at the plants total efficiency (heat & power). Assuming the gas turbine is operating at its highest possible efficiency at all times the heat rate is calculated as shown in Figure 3.

Figure 3: Heat rate definition for tax calculations.

The operating strategy of the gas turbine can change the heat rate (seasonal efficiency) substantially. This definition of heat rate is used for Canadian tax calculations such as class 43.1. Class 43.1 allows for an accelerated capital cost allowance if the energy project meets the specified heat rate (energy efficiency). The tax section of the RETScreen model can be used to calculate the tax benefits of meeting Class 43.1. Fuel consumption should be based on higher heating value. As an example if the waste heat cant be fully used at part of the year the heat rate will increase.

Heat rate for gas turbines

Equipment manufacturers typically quote the heat rate using lower heating values LHV. The figure below shows the quoted heat rate for gas turbines below 5 MW. Lower heating value is used for trading in most countries except for the US and Canada. For North America its very important that these numbers are converted to higher heating value.

Heating value is a measure of energy released when a fuel is completely burned. Depending on the composition of the fuel (amount of hydrogen) the amount of steam in the combustion products varies. Higher heating value (HHV) is calculated assuming the combustion product is condensed and the steam is converted to water. Lower heating value (LHV) is calculated assuming the combustion product stays in a vapour form.

For natural gas the difference between higher and lower heating value is approximately 10.3% and for diesel (#2 oil) it is 5.8%.

The following figures shows the Heat Rates for 34 gas turbines, using lower and higher heating values (natural gas).

Figure 4: Typical heat rates for gas turbines – LHV (<5 MW).

Figure 5 shows the heat rates converted to HHV for natural gas.

Figure 5: Typical heat rates for gas turbines – HHV (<5 MW).

Heat rates quoted are based on ISO conditions. Several factors affects the heat rate for the gas turbine, such as altitude, humidity, ambient temperature and degradation. The figures and values shown are typical numbers and needs to be confirmed for each individual machine in the design stage of the project development.

Figure 6: Typical heat rate correction factor for altitude.

Figure 7 shows the distribution of the elevation of 314 Canadian weather stations. The majority of station being below 200 m elevation giving the altitude correction to less than 2%.

Figure 7: Altitude of Canadian weather stations.

Specific humidity also effects the gas turbine performance. Most weather station data will give a relative humidity calculated. Some station provide relative humidity expressed as two values for every month. The data provided can either be minimum or maximum values or values for the morning and afternoon. The relative humidity will then be converted for the monthly average temperature and converted to specific humidity.

Figure 8: Typical heat rate correction factor for specific humidity.

Ambient temperature also has an effect on the performance of the gas turbine. Figure 9 shows a typical correction factor for the ambient temperature. If the project is viable the manufacturer need to supply the data for the selected equipment. Conditioning of the inlet air will also change the system performance.

Figure 9: Typical heat rate correction factor for ambient temperature.

In the RETScreen weather database there are 259 stations in Canada that are below 55 degrees North. Plotting the frequency of the yearly average temperature will produce the following graph.

Figure 10: Average annual ambient temperature of Canadian weather stations.

Degradation of the turbine performance will also change the fuel consumption and power produced. Degradation over time can be in the 3% range for a gas turbine.

Figure 11 shows a summary of typical effects of different factors to be considered during the feasibility stage of the project.

Figure 11: Correction factors for heat rate.

Project definition, Cost and Financial analysis

To study the impact of the heat rate a typical project was defined. The project has a heating and power load characteristics as shown in the figure below. The power load peaks in the summer due to a cooling load. This should initiate an investigation to see if it is financially attractive to introduce absorption cooling. But for this paper this opportunity will ignored.

Figure 12: Heating and power load characteristics for project.

The following table summarizes the assumptions made for the project.

Assumptions	•		•	
Assumptions		Notural gao C I		
	¢/0 I			
	\$/GJ	7.50		
Availability	h	8,300		
Power capacity	kW	5,071		
Heat rate	kJ/kWh	13,431		
Heat recovery efficiency	%	62.5%		
Electricity export rate	\$/MWh	30		
Electricity rate - proposed case	\$/MWh	110		
Electricity rate - base case	\$/kWh	100		
End-use energy efficiency measures	%	5.0%	Heating	
End-use energy efficiency measures	%	3.0%	Power	
Operating strategy		Full power capacity output		
		· · · · · ·	•	
Cost analysis				
Base load - Gas turbine	kW	5,071	1,500	\$7,606,500
Contingencies	%	10.0%	\$7,606,500	\$760,650
Interest during construction	8.0%	12	\$8,367,150	\$334,686
O&M \$/MWh	MWh	42,089	7.5	\$315,670
		·		
Financial Analysis				
Fuel cost escalation rate	%	2.0%		
Inflation rate	%	2.0%		
Discount rate	%	10.0%		
Project life	yr	25		
Debt ratio	%	70.0%		
Debt interest rate	%	7.0%		
Debt term	yr	10		
Effective income tax rate	%	30.0%	1	

Figure 13: Assumptions made for the proposed project.

The installed cost of a gas turbine varies, but for this exercise it has been assumed to be \$1,500/kW installed cost, add 10% contingency and interest during the 12 month construction period and we have a total cost of \$8,700,000 (\$1,720/kW). The above assumptions are user inputs in the CHP model and the values entered can be considered typical.

The selection of operating strategies will depend on the value of the heat and power. It might also change over the year. Different operating strategies will be tried to gage the impact on the project.

Operating strategy	Efficiency Heat rate Btu/kWh
Full power capacity output	5,573
Power load following	5,573
Heating load following	4,703

Figure 14: Efficiency (heat rate) for different operating strategies .

The Financial viability of the project can be presented using different factors. The table below shows the most common methods. This table is calculated using the "Heat load following" operating strategy.

Financial viability		
Pre-tax IRR - equity	%	50.5%
Pre-tax IRR - assets	%	18.2%
After-tax IRR - equity	%	32.0%
After-tax IRR - assets	%	12.2%
Simple payback	yr	4.3
Equity payback	yr	3.5
Net Present Value (NPV)	\$	8,168,900
Annual life cycle savings	\$/yr	899,952
Benefit-Cost (B-C) ratio	-	4.13
Debt service coverage	-	2.40
GHG reduction cost	\$/tCO2	(36)

Figure 15: Financial viability factors- operating strategy - heat load following.

For the same gas turbine using full power capacity output the following table is generated. The After tax IRR on equity for heat load following is slightly lower.

Financial viability		
Pre-tax IRR - equity	%	51.2%
Pre-tax IRR - assets	%	18.4%
After-tax IRR - equity	%	32.5%
After-tax IRR - assets	%	12.3%
Simple payback	yr	4.2
Equity payback	yr	3.4
Net Present Value (NPV)	\$	8,309,087
Annual life cycle savings	\$/yr	915,396
Benefit-Cost (B-C) ratio	-	4.18
Debt service coverage	-	2.43
GHG reduction cost	\$/tCO2	(33)

Figure 16: Financial viability factors – operating strategy – full power capacity output.

Sensitivity and risk analysis

Risk analysis will show which factors that have the greatest impact the decision making. This risk analysis is using a Monte Carlo simulation recalculating the project 500 times with random combinations of the main parameters for the project. The analysis is performed on the After-tax internal rate of return of the equity. The range of the different parameters are shown below. The table shows the initial selection for the discussed project.

Figure 17: Risk analysis – assumptions, impact and distribution graph.

The relative impact graph shows clearly that the gas turbine Heat rate and Heat recovery efficiency have a small impact on the project feasibility.

Greenhouse Gas (GHG) Emission Reduction

The RETScreen CHP model also includes a GHG analysis section. There are three different level for the GHG analysis. The user can select from a built-in database the country and fuel that will be replaced, define the fuel mix and electricity generation efficiency using built-in emission factors or with custom input emission factors together with the transmission and distribution losses for the central grid. With these inputs the model then calculates the gross annual GHG emission reduction.

Figure 18 shows the output of the simplified analysis for greenhouse gas emission reduction.

Base case electricity system (Baseline)							
		GHG emission	TAD				
		factor	1&D	GHG emission			
	r	(excl. T&D)	losses	factor	T		
Country - region	Fuel type	tCO2/MWh	76	tCO2/MWh	l		
Canada	Coal	0.867	5.0%	0.913			
Baseline changes during project life							
Base case system GHG summary (Baseline)							
					Fuel	GHG emission	
Fuel mix					consumption	factor	GHG emission
Fuel type %					MWh	tCO2/MWh	tCO2
Natural gas 61.8%					92,410	0.179	16,540
Electricity 38.2%					57,036	0.913	52,053
10tai 100.0%					149,446	0.459	68,593
Proposed case system GHG summary (Combined	d heating & power pro	piect)					
Proposed case system GHG summary (Combined	d heating & power pro	oject)					
Proposed case system GHG summary (Combined	d heating & power pro	oject)			Fuel	GHG emission	
Proposed case system GHG summary (Combined	d heating & power pro	oject)			Fuel consumption	GHG emission factor	GHG emission
Proposed case system GHG summary (Combined Fuel mix Fuel type %	d heating & power pro	oject)			Fuel consumption MWh	GHG emission factor tCO2/MWh	GHG emission tCO2
Proposed case system GHG summary (Combined Fuel mix Fuel type % Natural gas 92.4%	d heating & power pro	oject)			Fuel consumption <u>MWh</u> 161,647	GHG emission factor tCO2/MWh 0.179	GHG emission tCO2 28,932
Proposed case system GHG summary (Combined Fuel mix Natural gas 92.4% Electricity 7.6%	d heating & power pro	oject)			Fuel consumption MWh 161,647 13,236	GHG emission factor tCO2/MWh 0.179 0.913	GHG emission tCO2 28,932 12,080
Proposed case system GHG summary (Combined Fuel mix Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0%	d heating & power pro	oject)			Fuel consumption MWh 161,647 13,236 174,883	GHG emission factor tCO2/MWh 0.179 0.913 0.235	GHG emission tCO2 28,932 12,080 41,011
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0%	d heating & power pro	oject)			Fuel consumption MWh 161,647 13,236 174,883	GHG emission factor tCO2/MWh 0.179 0.913 0.235	GHG emission tCO2 28,932 12,080 41,011
Proposed case system GHG summary (Combined Fuel mix Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0%	d heating & power pro	oject)			Fuel consumption MWh 161,647 13,236 174,883	GHG emission factor tCO2/MWh 0.179 0.913 0.235	GHG emission tCO2 28,932 12,080 41,011
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0%	l heating & power pro	oject)			Fuel consumption MWh 161,647 13,236 174,883	GHG emission factor tCO2/MWh 0.179 0.913 0.235	GHG emission tCO2 28,932 12,080 41,011
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary	I heating & power pro	oject)			Fuel consumption MWh 161,647 13,236 174,883	GHG emission factor tCO2/MWh 0.179 0.913 0.235	GHG emission tCO2 28,932 12,080 41,011
Proposed case system GHG summary (Combined Fuel mix Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary	I heating & power pro	Proposed case			Fuel consumption MWh 161.647 13,236 174,883 Gross annual GHG emission	GHG emission factor tCO2/MWh 0.179 0.913 0.235	GHG emission tCO2 28,932 12,080 41,011 Net annual GHG emission
Proposed case system GHG summary (Combined Fuel mix Matural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary	I heating & power pro Base case GHG emission	pject) Proposed case GHG emission			Fuel consumption MWh 161,647 13,236 174,883 Gross annual GHG emission reduction	GHG emission factor tCO2/MWh 0.179 0.913 0.235 GHG credits transaction fee	GHG emission tCO2 28,932 12,080 41,011 Netannual GHG emission reduction
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary Combined heating & power	I heating & power pro Base case GHG emission tCO2	Proposed case GHG emission tCO2			Fuel consumption MWh 161.647 13.236 174.883 Gross annual GHG emission reduction tCO2	GHG emission factor tCO2/MWh 0.179 0.913 0.235 GHG credits transaction fee %	GHG emission tCO2 28,932 12,080 41,011 Net annual GHG emission reduction tCO2
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary Combined heating & power	Base case GHG emission tCO2 88,593	Proposed case GHG emission tCO2 41,011			Fuel consumption MWh 161.647 13,236 174,883 Gross annual GHG emission reduction tCO2 27,581	GHG emission factor tCO2/MWh 0.179 0.913 0.235 GHG credits transaction fee % 0%	GHG emission tCO2 28,932 12,080 41,011 Net annual GHG emission reduction tCO2 27,581
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary Combined heating & power project	Base case GHG emission tCO2 68,593	Proposed case GHG emission tCO2 41,011			Fuel consumption MWh 161,647 13,236 174,883 Gross annual GHG emission reduction tCO2 27,581	GHG emission factor tCO2/MWh 0.179 0.913 0.235 GHG credits transaction fee % 0%	GHG emission tCO2 28,932 12,080 41,011 Net annual GHG emission reduction tCO2 27,581
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary Combined heating & power	Base case GHG emission tCO2 68,593	Proposed case GHG emission tCO2 41,011			Fuel consumption MWh 161.647 13.236 174.883 Gross annual GHG emission reduction reduction CO2 27,581	GHG emission factor tcCo2/MWh 0.179 0.913 0.235 GHG credits transaction fee % 0%	GHG emission tCO2 28,932 12,080 41,011 Net annual GHG emission reduction tCO2 27,581
Proposed case system GHG summary (Combined Fuel type % Natural gas 92.4% Electricity 7.6% Total 100.0% GHG emission reduction summary Combined heating & power project Net annual GHG emission reduction	Base case GHG emission tCO2 68,593 27,581	Proposed case GHG emission tCO2 41,011 tCO2	is equivalent to	5,607	Fuel consumption MWh 161.647 13,236 174,883 Gross annual GHG emission reduction tCO2 27,581 Cars & light trucks	GHG emission factor tCO2/MWh 0.179 0.913 0.235 GHG credits transaction fee % 0% not used	GHG emission tCO2 28,932 12,080 41,011 Net annual GHG emission reduction tCO2 27,581

Figure 18: GHG analysis.

Conclusion

As has been demonstrated in this paper, many factors have an influence on the heat rate of a gas turbine. After correcting the initial heat rate for higher heating value other factors can typically be ignored in the feasibility stage of the project. The use of the correct heat rate and heat recovery efficiency of a gas turbine is important. The understanding of factors that will effect the heat rates needs to be understood fully. One of the main factors that can alter the viability of a project is the understanding of how efficiency and heat rate are defined. The reference to lower heating value can create problems but with a full understanding of issues involved errors should be minimized.

It is recommended that a risk analysis is done in the pre-feasibility stage of the project development. This will determine the factors that has the greatest impact on the project viability. Focus to reduce the range of these factors until the value of the financial indicators are satisfactory within the preferred level of confidence.

References

RETScreen International, Combined heat and Power model, spreadsheet and online manual, 2005, http://www.retscreen.net/

Personal communication, Martin Lensink, CEM Engineering, St. Catharines, Ontario

Appendix

Canada

RETScreen® International

Clean Energy Project Analysis Software

Combined Heat & Power Project Model

Click here to Start

Canada

Description & Flow Chart Colour Coding **Online Manual**

Worksheets

Energy Model	
Load & Network	
Equipment Selection	
Cost Analysis	
Greenhouse Gas Analysis	
Financial Summary	
Sensitivity & Risk Analysis	
Tools	

Features

Product Data Weather Data Cost Data Unit Options & Fuel Value Ref. Language Options **Currency Options** CDM / JI Project Analysis

Clean Energy Decision Support Centre www.retscreen.net

> Training and Support Internet Forums Marketplace **Case Studies** e-Textbook

> > **Partners**

Version 3.2

© Minister of Natural Resources Canada 1997-2005.

NRCan/CETC - Varennes

RETScreen Energy Model - Combined heating & power project

Peak load

Natural gas

GJ

16.624

Total

8.693

17,348

3.002

57,063

Complete Cost Analysis she

RETScreen Load & Network Design - Combined heating & power project

Heating project	Unit					
Cite conditions	F-Almonto.	Natas (Damas	Manathla investe			
Site conditions	Estimate	Notes/Kange	Monthly inputs			
Nearest location for weather data	Toronio	See Weather Database	*C-d	°C-a	-C-d	
Heating design temperature	°C -17.1	-40 to 15 °C	Month <18°C	Month <18°C	Month <18°C	
Annual heating degree-days below 18°C	°C-d 4,051	Complete Monthly inputs	January 778	May 174	September 84	See Weather Database
Domestic hot water heating base demand	% 10%	0% to 25%	February 678	June 18	October 282	
Equivalent degree-days for DHW heating	°C-d/d 1.2	0 to 10 °C-d/d	March 583	July 0	November 447	
Equivalent full load hours	h 6,565		April 351	August 0	December 657	
Base case heating system	Single building - space & process heating					
Heated floor area for building	m ² 45,000					
Fuel type	Natural gas - GJ					
Seasonal efficiency	% 65%					
Heating load calculation						
Heating load for building	W/m ² 70.0					
Peak process heating load	kW 6,000.0					
Process heating load characteristics	Standard					
Equivalent full load hours - process heating	h 8,760					
Space heating demand	MWh 7,506					
Process heating demand	MWh 52,560					
Total heating demand	MWh 60,066					
Total peak heating load	kW 9,150.0					
Fuel consumption - annual	GJ 332,676					
Fuel rate	\$/GJ 7.500					
Fuel cost	\$ 2,495,067					
Proposed case energy efficiency measures						
End-use energy efficiency measures	% 5%					
Net peak heating load	kW 8,692.5					
Net heating demand	MWb 57.063					

RETScreen Load & Network Design - Combined heating & power project

Complete Equipment Selection sheet

Complete Equipment Selection sheet

RETScreen Equipment Selection - Combined heating & power project

Proposed case power system									
System selection		Base load system							
Base load power system									
Туре		Gas turbine							
Availability	h	8,300		94.7%					
				_					
Fuel selection method		Single fuel							
Fuel type		Natural gas - GJ							
Fuel rate	\$/GJ	7.500							
Gas turbine									
Power capacity	kW	5,071	45.3%	See product database	2				
Minimum capacity	%	40%	1						
Electricity delivered to load	MWh	42,089	76.1%						
Electricity exported to grid	MWh	0		_					
Manufacturer		Solar Turbines							
Model		Taurus 60		1 unit(s)					
Heat rate	kJ/kWh	13,431	1						
Heat recovery efficiency	%	63%	1						
Fuel required	GJ/h	68.1							
Heating capacity	kW	8,655.1	99.6%						
Operating strategy - base load power system									
Fuel rate - base case heating system	\$/MWh	41.54							
Electricity rate - base case	\$/MWh	100.00							
Fuel rate - proposed case power system	\$/MWh	27.00							
Electricity export rate	\$/MWh	30.00	1						
Electricity rate - proposed case	\$/MWh	110.00	1						
				Remaining		Remaining			
		Electricity delivered	Electricity	electricity	Heat	heat	Power	Operating	
		to load	exported to grid	required	recovered	required	system fuel	profit (loss)	Efficiency
Operating strategy		MWh	MWh	MWh	MWh	MWh	MWh	\$	Btu/kWh
Full power capacity output		42,089	0	13,236	54,062	3,002	157,029	2,082,410	5,573
Power load following		42,089	0	13,236	54,062	3,002	157,029	2,082,410	5,573
Heating load following		31,674	0	23,651	54,062	3,002	118,173	1,985,899	4,703
				_					
Select operating strategy		Full power capacity outp	ut						

Return to Energy Model sheet

RETScreen Cost Analysis - Combined heating & power project

Settings - IAGT project - Canada								
Pre-reasibility analysis		Cost refere	nce	C	ost reference		None	
Feasibility analysis		Second cu	rrency		L			
nitial costs (credits)		Unit	Quantity		Unit cost		Amount	Relative costs
Feasibility study						<u> </u>		
Feasibility study		cost	1			\$	-	0.00/
Barris	Sub-total:				:	\$	-	0.0%
Development			4			<u> </u>		
Development	Cub tatalı	COST	1			\$	-	0.00/
Engineering	Sub-total:					Þ	-	0.0%
Engineering		cost	1	-		¢		
Engineering	Sub totali	COSI				¢ ¢	-	0.09/
Bower system	Sub-lotal.				•	Φ	-	0.0%
Base load Gas turbine		F/W	5 071	¢	1 500	¢	7 606 500	
Peak load - Grid electricity		k///	11 109	φ	1,500	Ψ ¢	7,000,000	
Road construction	г	km	11,130			Ψ \$	-	
Transmission line	ŀ	km		-		Ψ \$	-	
Substation	L	project		-		φ \$	-	
Energy efficiency measures		project	1	-		φ \$	-	
Custom		credit	1	_		¢ \$	-	
Custom		orean	· · ·	-		\$	-	
	Sub-total:					\$	7,606,500	87 4%
Heating system	oub total.					•	.,,	011170
Base load - Gas turbine	ſ	kW	8.655.1		3	\$	-	
Peak load - Boiler		kW	8,692.5			\$	-	
Energy efficiency measures	L	project	1		:	\$	-	
Custom		cost	1		:	\$	-	
					:	\$	-	
	Sub-total:					\$	-	0.0%
Balance of system & miscellaneous								
Balance of system & miscellaneous		cost	1		:	\$	-	
Contingencies	_	%	10.0%	\$	7,606,500	\$	760,650	
Interest during construction		8.00%	12 month(s)	\$	8,367,150	\$	334,686	
	Sub-total:					\$	1,095,336	12.6%
otal initial costs						\$	8,701,836	100.0%
		Line it.	0		Linit east	_	A	Deletive exet
nnual costs (credits)		Unit	Quantity		Unit cost		Amount	Relative costs
Date & labour		project	1			¢		
		project	1 42.090	¢	7.50	¢ ¢	215 670	
Contingonaios		COSI %	42,009	¢ Q	215 670	¢ ¢	315,670	
Contingencies	Sub total:	70		φ	313,070	ф ф	245 670	5 10/
Fuel	Sub-lotal.				•	Φ	315,670	5.170
Natural das		GL	591 020	¢	7 500	¢	1 261 171	
Flectricity		MWh	13 236	φ \$	110 000	Ψ \$	1 455 949	
LIGGUIGLY	Sub total:	101 0 011	10,200	Ψ	110.000	Ψ	5 920 424	04.0%
otal annual costs	Sub-ioial.				-	Ψ ¢	5,020,424	34.370 100.0%
otal annual COSIS						φ	0,130,093	100.0%

Periodic costs (credits)	Unit	Year	Unit cost	Amount	
			\$	-	
			\$	-	
			\$		
End of project life			\$	-	Go to GHG Analysis

RETScreen Greenhouse Gas (GHG) Emission Reduction Analysis - Combined heating & power project

Settings - IAGT project - Canada	
GHG Analysis Potential CDM project	 Simplified analysis Standard analysis Custom analysis

Base case electricity system (Baseline)

		GHG emission		
		factor (excl. T&D)	T&D losses	GHG emission factor
Country - region	Fuel type	tCO2/MWh	%	tCO2/MWh
Canada	Coal	0.867	5.0%	0.913

Baseline changes during project life

Base case system GHG summary (Baseline)

	Fuel mix	Fuel consumption	GHG emission factor	GHG emission
Fuel type	%	MWh	tCO2/MWh	tCO2
Natural gas	61.8%	92,410	0.179	16,540
Electricity	38.2%	57,036	0.913	52,053
Total	100.0%	149,446	0.459	68,593

Proposed case system GHG summary (Combined heating & power project)

	Fuel mix	Fuel consumption	GHG emission factor	GHG emission
Fuel type	%	MWh	tCO2/MWh	tCO2
Natural gas	92.4%	161,647	0.179	28,932
Electricity	7.6%	13,236	0.913	12,080
Total	100.0%	174,883	0.235	41,011

Combined heating & power	Base case GHG emission tCO2	Proposed case GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
project	68,593	41,011			27,581	0%	27,581
Net annual GHG emission reduction	27,581	tCO2	is equivalent to	5,607	Cars & light trucks	not used <u>Complete Financia</u>	al Summary sheet

RETScreen Financial Summary - Combined heating & power project

Annual fuel cost summary - IAGT project	- Canada							Yearly c	ash flows		
		Energy	End-use					Year	Pre-tax	After-tax	Cumulative
	Peak load	demand	energy rate	Fuel cost				#	\$	\$	9
Base case system	kW	MWh	\$/MWh	\$				0	(2,610,551)	(2,610,551)	(2,610,551
Power	11,544	57,036	100.00	5,703,629				1	1,236,593	733,353	(1,877,197
Heating	9,150	60,066	41.54	2,495,067				2	1,278,670	753,549	(1,123,648
Fuel cost - base case				8 108 606				3	1,321,369	703 730	(349,902
i dei cost - base case				0,130,030				5	1,303,300	813 645	1 257 412
								6	1 455 564	833 391	2 090 803
		Energy	End-use					7	1,502,020	852,925	2,943,728
	Capacity	delivered	energy rate	Fuel cost				8	1,549,406	872,201	3.815.929
Proposed case system	kW	MWh	\$/MWh	\$				9	1,597,739	891,168	4,707,097
Power	16,269	55,325	102.95	5,695,745				10	1,647,039	909,770	5,616,867
Heating	17,348	57,063	2.18	124,679				11	2,564,587	1,795,211	7,412,078
-								12	2,615,879	1,831,115	9,243,194
Fuel cost - proposed case				5,820,424				13	2,668,197	1,867,738	11,110,931
								14	2,721,561	1,905,092	13,016,024
								15	2,775,992	1,943,194	14,959,218
Financial parameters			Project costs and	savings/income s	ummary			16	2,831,512	1,982,058	16,941,276
General	0/	0.0%	Initial costs		0.00/	¢		17	2,888,142	2,021,699	18,962,976
Fuel cost escalation rate	%	2.0%	Feasibility study		0.0%	\$	-	18	2,945,905	2,062,133	21,025,105
Discount rate	70 0/	2.0%	Engineering		0.0%	¢	-	19	3,004,623	2,103,370	23,120,400
Project life	70	10.0%	Power system		87.4%	ф Ф	7 606 500	20	3 126 218	2,140,444	20,273,928
i loject lite	yı	23	Heating system		0.0%	Ψ ¢	7,000,000	22	3 188 742	2,100,332	29 694 401
Finance			ricating system		0.070	Ψ		23	3 252 517	2 276 762	31 971 162
Incentives and grants	\$		Balance of system	a & misc.	12.6%	\$	1.095.336	24	3,317.567	2,322,297	34.293.459
Debt ratio	%	70.0%	Total initial costs		100.0%	\$	8,701.836	25	3,383.919	3,383.919	37.677.378
Debt	\$	6,091,285	11				.,,	1			. ,,
Equity	\$	2,610,551						1			
Debt interest rate	%	7.00%									
Debt term	yr	10	Annual costs and	lebt payments							
Debt payments	\$/yr	867,262	O&M			\$	315,670				
			Fuel cost - propos	ed case		\$	5,820,424				
			Debt payments - 1	0 yrs		\$	867,262				
Income tax analysis		×	Total annual cost	S		\$	7,003,355				
Effective income tax rate	%	30.0%		-114 - 1							
Loss carryforward?		NO	Periodic costs (cre	aits)							
Depreciation method		None									
Tax holiday available?	ves/no	No									
	yeanio	110	Annual savings an	d income							
			Fuel cost - base c	ase		\$	8,198,696				
			•				-,,				
Annual income											
Customer premium income (rebate)											
			Total annual savi	ngs and income		\$	8,198,696				
			Financial viebility								
			Financial Viability	h .		0/	E4 20/				
			Pre-tax IRR - equi	ly to		70	51.2%				
			After-tax IRR - equ	lity		70 9/2	32.5%				
			After-tax IRR - ass	sets		%	12.3%	1			
Electricity export income			Simple pavback			vr	4.2	1			
			Equity pavback			vr	3.4	1			
1			Net Present Value	(NPV)		\$	8,309,087	1			
			Annual life cycle s	avings		\$/yr	915,396	1			
			Benefit-Cost (B-C) ratio		-	4.18	1			
			Debt service cove	rage		-	2.43	1			
Clean Energy (CE) production income			GHG reduction co	st		\$/tCO2	(33)				
			Cumulative cash f	ows graph							
			40.000.000								
			,,								
			35,000,000 -								
GHG reduction income		-									
GHG reduction income											
Net GHG reduction	tCO2/vr	27 581	S 25 000 000								
Net GHG reduction - 25 vrs	tCO2/y1	689,535	<u>a</u> 25,000,000 -							//	
		300,000	20,000.000								
			č						//		
			\$ 15,000,000 -					/			
			ati				/	//			
			10,000,000				//				
			3 5 000 000								
			5,000,000 -			/	-				
			0								
			-	1 2 3 4	5 6	7 8	9 10 11 12	13 14	15 16 17 1	8 19 20 21	22 23 24 25
			(5,000,000) 🖳	0 4		. 0		.0 14			2
							(00r				
1			11			1	edi				

RETScreen Sensitivity and Risk Analysis - Combined heating & power project

Perform analysis on	After-ta	x IRR - equity				
Sensitivity range		20%				
Threshold	12	%	1			
				Initial costs		\$
Debt interest rate		6,961,469	7,831,652	8,701,836	9,572,020	10,442,203
%		-20%	-10%	0%	10%	20%
5.60%	-20%	46.5%	39.1%	33.5%	29.1%	25.5%
6.30%	-10%	45.9%	38.6%	33.0%	28.6%	25.1%
7.00%	0%	45.3%	38.1%	32.5%	28.1%	24.6%
7.70%	10%	44.8%	37.5%	32.0%	27.6%	24.2%
8.40%	20%	44.2%	37.0%	31.4%	27.2%	23.7%
				Initial costs		\$
Fuel cost - proposed ca	ase	6 961 469	7 831 652	8,701,836	9 572 020	10 442 203
\$		-20%	-10%	0%	10%	20%
4 656 339	-20%	84.3%	72.1%	62.5%	54.7%	48.2%
5 238 381	-10%	64.6%	54.8%	47.1%	40.9%	35.9%
5 820 424	0%	45.3%	38.1%	32.5%	28.1%	24.6%
6 402 466	10%	27.6%	23.0%	19.6%	17.0%	14.8%
6 984 508	20%	12.8%	10.5%	8 7%	7 2%	5.9%
0,004,000	2070	12.070	10.070	0.170	1.270	0.070
				Initial costs		\$
Debt interest rate		6,961,469	7,831,652	8,701,836	9,572,020	10,442,203
%		-20%	-10%	0%	10%	20%
5.60%	-20%	46.5%	39.1%	33.5%	29.1%	25.5%
6.30%	-10%	45.9%	38.6%	33.0%	28.6%	25.1%
7.00%	0%	45.3%	38.1%	32.5%	28.1%	24.6%
7.70%	10%	44.8%	37.5%	32.0%	27.6%	24.2%
8.40%	20%	44.2%	37.0%	31.4%	27.2%	23.7%
sk analysis for After-tax	IRR - equity					
Perform analysis on	After-ta	x IRR - equity				
Parameter		Unit	Value	Range (+/-)	Minimum	Maximum
Initial costs		\$	8,701,836	10%	7,831,652	9,572,020
O&M		\$	315,670	10%	284,103	347,237
Fuel cost - proposed cas	e	\$	5,820,424	10%	5,238,381	6,402,466
Fuel cost - base case		\$	8,198,696	10%	7,378,827	9,018,566
Heat recovery efficiency		%	63%	5%	59%	66%
Debt interest rate		%	7.00%	10%	6.30%	7.70%
Heat rate		kJ/kWh	13,431	3%	13,028	13,834
		Imp	act - After-tax IRR -	equity		
					Fuel cost - base case	
					Fuel cost - proposed case	
					Initial costs	
					Heat rate	
			1		() ¥ 8.4	

31.8%

12/07/2005; RETScreen -IAGT conferance.xls

42.1%