Advancements in Gas Turbine Repair Technology Resulting from Gas Turbine Design Evolution

Scott Hastie, P.Eng Liburdi Turbine Services

IAGT Fall 2010 Course – Hamilton, Ontario

Agenda

- Gas Turbine Design Evolution
- Repair Process
- Technological Advancements to Address Repair Challenges

Design Evolution

Westinghouse W191 Blade

GE Frame 7FA Row 1 Bucket

Gas Turbine Design

- Performance Improvements
- Increased Power Output
- Increased Efficiency
- Reduced Emissions
- Increased Firing Temperatures
- Increased Flexibility
- Extended Maintenance Intervals

Gas Turbine Design

- Material Improvements
- Advanced Coatings
- Advanced Cooling Designs
- Advanced Geometry

Frame 7FA

Design Evolution

F – Class Design

- F Class Design derived from Aero Blade
 - Internal cooling circuit design, alloy selection
 - Advanced technologies applied from GE, Rolls-Royce aero experience

F – Class Design

Manufacturer/Model	First Stage Turbine Blade / Bucket
Alstom-GT26	Single Crystal, Ni-Base Matrix Cooled VPS-NiCoCrAIY with APS-TBC
GE-Frame 7FA	Directionally Solidified, GTD111 Serpentine Cooling w/Turbulators LPPS-CoCrAIY/DVC-TBC, Plus Internal Coatings
Siemens V94.3A	Single Crystal PWA1480 VPS-CoNiCrAIYSi Plus Internal Coatings
Siemens-Westinghouse 701G	Directionally Solidified CM247 Serpentine, Film & Showerhead VPS-NiCoCrAIY/TBC
GE LM6000 / RR Trent	Single Crystal, Serpentine, Film, Showerhead Internal coating, EBPVD TBC

Not only applicable To Blades

Frame 7FA

Gas Turbine Materials

Turbine Rotating

N105, N108, N115, Waspalloy, U-500, U520, U700,U710, U720, INX750, IN738, Rene80, GTD111, Mar-M247, Mar-M002, PWA1483, CMSX4, ReneN5

Turbine Stationary

300SS, 400SS, C242, C1023 N-155, M509, HS-188,L605 X-40, X-45, FSX-414, ECY-768 IN738, R80, GTD222, GTD444

Compressor

Casings Grey Cast Iron Carbon Steel Aluminum

Turbine Shells

Ductile Cast Iron Stainless Steel Nickel Alloy

Compressor Wheels/Disks Ni-Cr-MO-V Forging

Turbine Wheels/Discs Ni-Cr-MO-V Steel Cr-Mo-V Forging 12Cr Stainless Discalloy A286 IN718

Design Evolution - Cooling

Design Evolution - Cooling

After Frasier US Patent 5295530

Blade Repair Process

Incoming Inspection

Strip Coatings

Fluorescent Penetrant Inspection

Dimensional Repair

Machine/Finish Geometry

Rejuvenation Heat Treatment

Pre-Coating Inspection

Coating

Final Inspection

Incoming Inspection

- Triage
 - Is the component repairable?
 - What is the expected level of repair?
- Solid Blades vs. F-Class Internal Geometry
- Increased reliance on life analysis of blade

Life Analysis

DS Alloy Damage Cracking along DS grain boundaries at tip Oxidation burning at tip Coating cracks in airfoil #1 Cooling hole crack Incomplete internal coating

Incoming Inspection

• Internal Geometry

Incoming Inspection

Internal Cleaning

- Internal Cleaning using thermal and chemical process are necessary before stripping
 - Internal deposits and oxides limit effectiveness of stripping process

Internal Cleaning

• Oxide removal allows complete stripping

Before cleaning

After cleaning

Coating Stripping

- Masking Required for Internal Only Strip
- Internal Stripping

Pump

Dimensional Repair

- Tip weld of un-shrouded blades
- Z-notch restoration of shrouded blades
- Seal fin restoration

Weldability

Weldability of Superalloys

Dimensional Repair

- Welding of gamma prime (γ[´]) strengthened superalloys is not as easy when compared to welding of cobalt base alloys or stainless steel alloys.
- Fusion Zone cracking
- HAZ cracking (microfissuring)
- Post weld heat treat cracking (strain age cracking

Materials – Single Crystal

Material Selection

New Blade

Repaired Blades

Geometry Repair - Vanes

Liburdi Powder Metallurgy (LPM[™]) is a modified wide gap brazing process.

Can be used to fill very large gaps of more than 0.5" size

Build-up damaged surfaces

Up to 0.15" thick per application, multiple layers per repair

Heat treatments tailored to match the substrate alloy.

Component distortion greatly reduced using LPM[™] compared to conventional weld methodology.

Much stronger than braze repairs.

Nickel based LPM[™] materials can be applied to nickel, cobalt and stainless steel alloys.

Crack, crazed & oxidized surface

Blend to remove crack, crazing & oxidation

LPM[™] applied to surfaces

Heat treated and blended deposits

Geometry Repair - Vanes

Original braze joint requires repair/restoration

•Incoming damage – burned leading and trailing edges , thin airfoils, burned outer shroud surfaces, shroud braze joints deteriorated

•Previously NGVs were considered not repairable and were replaced with new.

Severely burned trailing edges

Geometry Repair - Vanes

 LPM high strength alloy as-applied to leading edge, mid airfoil, and trailing edges

ED)

 LPM material after high temperature vacuum heat treatment to "cast" material to the airfoils

Machining / Finishing

- Tip Cap Machining
- EDM Hole Drilling

Cooling Hole Drilling

Heat Treatment

Liburdi Turbine Services Heat Treatment Development Timeline

Coating

Selection of Coating System

Coating

External airfoil surfaces – MCrAIY with over aluminize or MCrAIY bond coat with DVC or EB-PVD TBC.

Recoating internal airfoil surfaces – diffusion aluminide or silicon aluminide

- Handler March Charles

Coating

Repair Evolution

Westinghouse W191 Blade

GE Frame 7FA Row 1 Bucket

Thanks for Listening.

Any Questions?

