Best Practices in the Operation and Maintenance of GE DLN Combustion Systems

Presented to
IAGT Symposium, Banff, Alberta, October 19, 2011
by
Mitchell Cohen, Turbine Technology Services
The Goal of DLN “Best” Practices?

To identify

• Commonsense Measures
• Simple Operational and Maintenance Procedures
• Key Data to Acquire

in order to

• Improve operational reliability of DLN systems
• Reduce the occurrence in-service DLN emissions and dynamics problems
• Simplify troubleshooting when problems do occur
Source and Application of Best Practices

- Tuning and troubleshooting of DLN operational problems on over 100 GE DLN machines over the last 15 years
- Applicable GE Gas Turbines and DLN systems

<table>
<thead>
<tr>
<th>DLN System</th>
<th>Turbine Model</th>
<th>Firing Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLN-1</td>
<td>5P, 5/2C, 3/2J</td>
<td>(1735 - 1770°F)</td>
</tr>
<tr>
<td>DLN-1</td>
<td>7E/EA, 6B</td>
<td>(2020 - 2077°F)</td>
</tr>
<tr>
<td>DLN-2</td>
<td>6FA, 7FA</td>
<td>(2350°F)</td>
</tr>
<tr>
<td>DLN-2.6</td>
<td>7FA+(e)</td>
<td>(2390 - 2420°F)</td>
</tr>
</tbody>
</table>
DLN Operational Problems

- High NOx emissions
- High CO emissions
- High combustion dynamics \rightarrow wear, mechanical distress
- Failed mode transfers \rightarrow inability to reach premixed mode
- Primary Re-ignition (DLN1) \rightarrow inability to maintain premixed mode
- Lean Blow Out (LBO) Trips
- Flashback \rightarrow flame holding in premixer \rightarrow melting, thermal distress
Multiple Fuel Streams and Tuning

- All DLN systems employ staging of multiple fuel streams to achieve precise fuel/air ratio control within the combustor in order to balance the often competing demands of NOx and CO emissions, combustion dynamics, and lean blow out margin.

- DLN Tuning is process of optimizing the staging of these multiple fuel streams – by adjusting the ratio of fuel to each fuel stream – over the load range of the turbine.
Fuel/Air Ratio Impact on Emissions

- DLN Combustors operate very close to the Lean Flammability Limit
- DLN Combustors have a very narrow Equivalence Ratio operating range

\[
E.R = \frac{(f/a)_{\text{actual}}}{(f/a)_{\text{stoich}}}
\]
Fuel/Air Ratio Impact on Emissions

- 25/25 DLN has wider fuel/air ratio operating range than 9/25
DLN-1

- 3 fuel streams
- 2 fuel streams in Premixed Mode
DLN-2

- 4 fuel streams
- 3 fuel streams in Premixed Mode
DLN-2.6

- 4 fuel streams
- 4 fuel streams in Premixed Mode (Mode 6)
Fuel Split Schedules

- As unit loads/unloads, split schedules modulate the percentage of total fuel to each manifold as a function of *Turbine Reference Temp*, a calculated value approximating Firing Temp.

- The number of required split schedules is always one less than the number of fuel manifolds

- Adjustments to fuel split schedules are primary means of “tuning” the GE DLN combustors to optimize the competing requirements of NOx, CO, LBO margin, and combustion dynamics
Tuning…. And its Limitations

• Tuning occurs at only a single point in time

• Even well-tuned machines are subject to factors which can negatively impact fuel/air ratio control and degrade DLN operability over time

 ➢ Wear and degradation of combustor hardware over maintenance cycle
 ➢ Drift or failure of pressure and temperature instrumentation
 ➢ Improper installation of control components (gas/purge valves, spark plug)
 ➢ Improper operation of fuel conditioning equipment
 ➢ Poor quality control in combustion hardware repair
 ➢ Drift or poor calibration of emissions monitoring equipment
 ➢ Improper installation or configuration of dynamic monitoring equipment
Impact of Pressure Instrumentation
Key Pressure Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Transmitter Name</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{cd}</td>
<td>Compressor Discharge Pressure</td>
<td>96CD</td>
<td>triple</td>
</tr>
<tr>
<td>P_{bar}</td>
<td>Barometric Pressure</td>
<td>96AP</td>
<td>triple</td>
</tr>
<tr>
<td>ΔP_{inlet}</td>
<td>Inlet Total Pressure Drop</td>
<td>96CS</td>
<td>single</td>
</tr>
<tr>
<td>ΔP_{exh}</td>
<td>Exhaust Pressure Drop</td>
<td>96EP</td>
<td>single</td>
</tr>
</tbody>
</table>

- P_{cd}, P_{bar}, ΔP_{inlet}
 - Inputs to Base Load Exhaust Temperature Control Curve
 - Sets base load firing temperature

- ΔP_{exh}
 - Input to combustion reference temperature (TTRF1) calculation
 - Directly impacts fuel split schedule that proportions fuel among multiple streams

- Measurement errors in these transmitters are the single biggest source of post-tuning DLN operational problems
Base Load Control Curve

Standard (non-DLN) Combustor

\[T_x = f(P_{cd}) \]

DLN Combustor

\[T_x = f(CPR) = f(P_{cd}, P_{bar}, \Delta P_{inlet}) \]

\[CPR = \frac{P_{cd} + P_{bar}}{P_{bar} - \Delta P_{inlet}} \]
Barometric Pressure Measurement Error

<table>
<thead>
<tr>
<th>Site Elevation</th>
<th>P_{bar} Actual psia</th>
<th>P_{bar} Indicated psia</th>
<th>CPR Actual</th>
<th>CPR Indicated</th>
<th>Texh Expected $^\circ$F</th>
<th>Texh Actual $^\circ$F</th>
<th>Tx error $^\circ$F</th>
<th>T_{fire} error $^\circ$F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level</td>
<td>14.7</td>
<td>14.40</td>
<td>12.7</td>
<td>13.00</td>
<td>995.1</td>
<td>988.1</td>
<td>-6.9</td>
<td>-11.8</td>
</tr>
<tr>
<td>Sea Level</td>
<td>14.7</td>
<td>14.70</td>
<td>12.7</td>
<td>12.70</td>
<td>995.1</td>
<td>995.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500 ft</td>
<td>14.4</td>
<td>14.70</td>
<td>12.7</td>
<td>12.47</td>
<td>995.1</td>
<td>1001.3</td>
<td>6.2</td>
<td>+10.5</td>
</tr>
<tr>
<td>1000 ft</td>
<td>14.2</td>
<td>14.70</td>
<td>12.7</td>
<td>12.24</td>
<td>995.1</td>
<td>1007.3</td>
<td>12.3</td>
<td>+20.8</td>
</tr>
<tr>
<td>1500 ft.</td>
<td>13.9</td>
<td>14.70</td>
<td>12.7</td>
<td>12.02</td>
<td>995.1</td>
<td>1013.4</td>
<td>18.3</td>
<td>+31.2</td>
</tr>
</tbody>
</table>

- Impact of barometric pressure is significant at high elevation
- Using sea level value (29.92” HG or 14.7 psia) at elevated sites will increase T_{fire} by 10$^\circ$F for each 500 ft of elevation
- Can not “calibrate” barometric pressure transducers using airport or weather values from the internet – these values are altitude-corrected and will always read in the range of 30” Hg
- Low P_{bar} readings cause under-firing \rightarrow increased CO emissions (E-class), lost BL output
- High P_{bar} readings cause over-firing \rightarrow increased NOx emissions, reduced hardware life
Inlet Pressure Drop Measurement Error

<table>
<thead>
<tr>
<th></th>
<th>ΔP_{inlet}</th>
<th>P_{bar}</th>
<th>P_{cd}</th>
<th>CPR</th>
<th>Texh</th>
<th>T_x</th>
<th>T_{fire}</th>
<th>error</th>
<th>T_{fire}</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in. H20</td>
<td>psia</td>
<td>psig</td>
<td></td>
<td></td>
<td>0°F</td>
<td>0°F</td>
<td></td>
<td>0°F</td>
<td></td>
</tr>
<tr>
<td>Sensor Failed High</td>
<td>9.0</td>
<td>14.70</td>
<td>171.0</td>
<td>12.92</td>
<td>989.4</td>
<td>-4.6</td>
<td>-7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Case</td>
<td>3.5</td>
<td>14.70</td>
<td>171.0</td>
<td>12.74</td>
<td>994.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Failed Low</td>
<td>0.0</td>
<td>14.70</td>
<td>171.0</td>
<td>12.63</td>
<td>996.8</td>
<td>2.9</td>
<td>+4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ΔP_{inlet} measured by a single transducer – is not triple redundant as are P_{bar} and P_{cd}
- Sensor can fail either high or low
- Sensor failing high causes under-firing \rightarrow increased CO emissions on E-class machines ($T_{\text{fire}} = 2020^\circ\text{F}$)
- Sensor failing low causes over-firing \rightarrow increased NOx emissions, reduced hardware life
Exhaust Pressure Drop Measurement Error

- ΔP_{exh} is an input to calculated TTRF1, Combustion Reference Temperature. When ΔP_{exh} fails, TTRF1 is calculated incorrectly.

- $\Delta P_{\text{exh}} \rightarrow \text{TTRF1} \rightarrow \text{Fuel Split Schedules} \rightarrow \text{NOx}$

- If ΔP_{exh} fails high \rightarrow indicated TTRF1 lower than actual \rightarrow fuel split results in higher NOx

- If ΔP_{exh} fails low \rightarrow indicated TTRF1 higher than actual \rightarrow fuel split results in lower NOx

- For 7FA DLN-2.6, excessively low NOx emissions can lead to lean blow out trip
Impact of Exhaust Pressure Transmitter Failing High

- When ΔP_{exh} fails high
 - Indicated TTRF1 is lower than the Actual TTRF1 and
 - fuel splits operate at higher split values than intended
Impact on NOx of Exhaust Pressure Transmitter Failing High

- Intended Split at Actual TTRF1 of 2280: PM1 = 17.0%, PM3 = 65.0
 → Intended NOx = 6.5 ppm
- PM1 Split Increased from 17.0 to 18.0% → +1.5 ppm NOx
- PM3 Split Increased from 65.0 to 67.0% → +1.2 ppm NOx
- NOx at Incorrect Split = 9.2 ppm
Fuel Nozzles
DLN vs. Diffusion Fuel Nozzles

- DLN Combustor - Multiple fuel nozzles per combustor with a numerous small metering and discharge orifices to achieve precise fuel/air ratio control – small size makes orifices easily susceptible to plugging or fouling

- Standard Combustor – Large, single fuel nozzle per combustor with large discharge orifices; less susceptible to plugging from debris
Fuel Nozzles and Uniform Fuel/Air Ratio

- Uniform can-to-can fuel/air ratio is one of the most critical requirements for optimal DLN combustor operation.

- Fuel nozzles that are “well-balanced”, that is, that minimize can-to-can variation in fuel nozzle effective area, are key to achieving uniform fuel/air ratio distribution.

- Accurate and repeatable flow testing is critical to achieving minimal can-to-can effective area variation.

- Proper fuel system conditioning and O&M practices are necessary to maintain minimal can-to-can effective area variation over the maintenance cycle of the combustor.
Consequences of Poor Can-to-Can F/A Ratio Distribution

- High CO emissions – DLN-1, E-class machines
- Lean Blow Out Trips – 7FA DLN-2.6
- High Combustion Dynamics
- Flashback (7FA DLN-2/2.6)
- Primary Re-Ignition (DLN-1)
- Reduced Load Turn Down – all DLN systems
- High NOx emissions – all DLN systems
DLN-1 Example: Sensitivity of CO to Effective Area Variation

- Dual-Fuel Primary Nozzle:
 - 6 gas metering orifices per fuel nozzle, 6 nozzles per combustor
- 360 primary metering orifices per machine
- Site Z – three orifices total in two nozzles on one primary end cover partially plugged with debris
- Debris came from primary purge during liquid fuel operation
DLN-1 Example: Sensitivity of CO to Effective Area Variation

1 of 10 end covers with 6 primary nozzles

1 of 6 primary nozzles with 6 metering orifices
DLN-1 Example: Sensitivity of CO to Effective Area Variation

<table>
<thead>
<tr>
<th>Can #</th>
<th>Primary Effective Area (sq. in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3866</td>
</tr>
<tr>
<td>2</td>
<td>0.3868</td>
</tr>
<tr>
<td>3</td>
<td>0.3882</td>
</tr>
<tr>
<td>4</td>
<td>0.3877</td>
</tr>
<tr>
<td>5</td>
<td>0.3893</td>
</tr>
<tr>
<td>6</td>
<td>0.3735</td>
</tr>
<tr>
<td>7</td>
<td>0.3860</td>
</tr>
<tr>
<td>8</td>
<td>0.3885</td>
</tr>
<tr>
<td>9</td>
<td>0.3861</td>
</tr>
<tr>
<td>10</td>
<td>0.3863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10 Can Average</th>
<th>High 9 Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0.3893</td>
<td>0.3893</td>
</tr>
<tr>
<td>Min</td>
<td>0.3735</td>
<td>0.3860</td>
</tr>
</tbody>
</table>

- **Partial plugging in 3 of 360 metering orifices caused CO increase from 15 to 35 ppm**
- **Flow data shows that combustor was only 3.2% low in effective area relative to 10-can average**
- **20 ppm increase in machine CO due to one can → CO in the can with plugged nozzles increased by 200 ppm (200 ppm /10 = 20 ppm)**
- **Plugging was not discernable as cold spot in exhaust temperature spread**
DLN-2.6 Example: Lean Blow Out Trip

- Three high exhaust spread trips occurred over two consecutive operating days.

- Based on OEM’s exhaust swirl chart, the cold spot in exhaust thermocouple array indicated the same combustor blowing out in all three trips → Can #2
DLN-2.6 Example: Lean Blow Out Trip

Highest Amplitude LBO and Cold Tones

<table>
<thead>
<tr>
<th>LBO Tones</th>
<th>Cold Tones</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: 0.283 PSI, 13 Hz</td>
<td>C1: 0.113 PSI, 55 Hz</td>
</tr>
<tr>
<td>C2: 0.605 PSI, 13 Hz</td>
<td>C2: 0.235 PSI, 84 Hz</td>
</tr>
<tr>
<td>C3: 0.236 PSI, 13 Hz</td>
<td>C3: 0.100 PSI, 118 Hz</td>
</tr>
<tr>
<td>C4: 0.127 PSI, 13 Hz</td>
<td>C4: 0.080 PSI, 118 Hz</td>
</tr>
<tr>
<td>C5: 0.108 PSI, 13 Hz</td>
<td>C5: 0.084 PSI, 89 Hz</td>
</tr>
<tr>
<td>C6: 0.065 PSI, 13 Hz</td>
<td>C6: 0.095 PSI, 113 Hz</td>
</tr>
<tr>
<td>C7: 0.053 PSI, 13 Hz</td>
<td>C7: 0.063 PSI, 119 Hz</td>
</tr>
<tr>
<td>C8: 0.094 PSI, 14 Hz</td>
<td>C8: 0.085 PSI, 118 Hz</td>
</tr>
<tr>
<td>C9: 0.254 PSI, 14 Hz</td>
<td>C9: 0.097 PSI, 79 Hz</td>
</tr>
<tr>
<td>C10: 0.187 PSI, 14 Hz</td>
<td>C10: 0.099 PSI, 115 Hz</td>
</tr>
<tr>
<td>C11: 0.136 PSI, 14 Hz</td>
<td>C11: 0.091 PSI, 114 Hz</td>
</tr>
<tr>
<td>C12: 0.119 PSI, 14 Hz</td>
<td>C12: 0.095 PSI, 116 Hz</td>
</tr>
<tr>
<td>C13: 0.140 PSI, 14 Hz</td>
<td>C13: 0.109 PSI, 05 Hz</td>
</tr>
<tr>
<td>C14: 0.142 PSI, 13 Hz</td>
<td>C14: 0.101 PSI, 113 Hz</td>
</tr>
</tbody>
</table>

Lowest Amplitude Hot Tone

<table>
<thead>
<tr>
<th>Hot Tones</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: 1.309 PSI, 133 Hz</td>
</tr>
<tr>
<td>C2: 0.346 PSI, 134 Hz</td>
</tr>
<tr>
<td>C3: 1.435 PSI, 134 Hz</td>
</tr>
<tr>
<td>C4: 1.481 PSI, 134 Hz</td>
</tr>
<tr>
<td>C5: 0.804 PSI, 134 Hz</td>
</tr>
<tr>
<td>C6: 1.383 PSI, 134 Hz</td>
</tr>
<tr>
<td>C7: 2.128 PSI, 134 Hz</td>
</tr>
<tr>
<td>C8: 2.262 PSI, 134 Hz</td>
</tr>
<tr>
<td>C9: 0.564 PSI, 134 Hz</td>
</tr>
<tr>
<td>C10: 0.593 PSI, 133 Hz</td>
</tr>
<tr>
<td>C11: 0.956 PSI, 134 Hz</td>
</tr>
<tr>
<td>C12: 0.953 PSI, 134 Hz</td>
</tr>
<tr>
<td>C13: 0.953 PSI, 134 Hz</td>
</tr>
<tr>
<td>C14: 1.567 PSI, 134 Hz</td>
</tr>
</tbody>
</table>

- Combustion dynamics provide further evidence of f/a ratio problem in Can #2.
- Highest LBO and Cold Tones and lowest Hot Tone imply leaner f/a ratio in Can #2 than in other cans.
- Tuning to eliminate high LBO Tone can result in high Hot Tone amplitudes in other cans → increased wear and mechanical distress.
Fuel Nozzles and Flow Testing

Understanding the methods, criteria, and quality control procedures used by vendors in repairing and flow testing fuel nozzles is key to optimizing combustor performance and minimizing effective area (A_e) variation.

- What is the criteria for allowable A_e variation?
 - Vendor and customer should establish this prior to flow testing.
- What is the absolute A_e target?
 - Need OEM original flow data or manufacturing spec.
 - Impacts combustion dynamics.
- Is flow stand calibrated against a master standard part?
- Is leak testing of flow stand part of test procedure?
- Is leak testing of nozzle seals on end cover part of test procedure?
- Are individual nozzles flow tested? How are they distributed around the unit?
- What are the calibration procedures for flow test stand instrumentation?
Fuel Nozzles and Flow Testing

- Flow testing of fuel nozzles before disassembly
 - A means of identifying O&M problem that led to increased area variation
 - Nozzles with large variation should be disassembled and inspected with goal of pinpointing the specific cause of the variation
- Post-assembly flow testing
 - Ensure nozzles meet absolute area target
 - Ensure nozzles meet target area variation limits
 - Difficult to find OEM criteria on allowable A_e variation
 - Lower NOx/CO limits (9 ppm) require tighter criteria than higher limits (25 ppm)
 - More difficult to achieve tighter limits on single vs. multiple nozzle assemblies
 - Single nozzle assemblies: DLN-1 secondary; DLN-2.6 PM1 nozzle
 - Multiple nozzle assemblies: DLN-1 primary; DLN-2.6 PM2/3 nozzles
 - Recommended variation for 9 ppm, multi-nozzle assemblies: +/- 1%
DLN Operational Reliability and Fuel Conditioning

- Properly designed Fuel Cleanup System is key to maintaining minimal effective area variation and reliable operation during combustor maintenance cycle
- Gas particulate filtration – not commonly a problem
 - Poor maintenance practices – debris falling into fuel or purge lines during outages
- Liquid Removal System
 - Auto-ignition of even small liquids droplets in combustor can cause flashback in DLN-2/2.6 combustors (severe damage) or primary re-ignition in DLN-1’s (reliability problem)
 - Maintaining adequate superheat (~50°F) above hydrocarbon dew point is critical to preventing auto-ignition – superheat commonly found to be inadequate
 - Must be sized large enough to handle unexpected liquid slugs in gas supply
 - Liquid deposits on nozzle orifices can form coke/varnish, changing nozzle effective area
 - Liquid deposits on control valves can form varnish, altering valve calibration & fuel splits