

Impact of Gasification Fuels on Gas Turbine Operation

by

Wajid Ali Chishty

Gas Turbine Laboratory, Institute for Aerospace Research

October 18, 2011 2011 IAGT Symposium, Banff, Alberta

National Research Conseil national Council Canada de recherches Canada

No part of this document may be reproduced or transmitted in any form or by any means, including photocopying and recording without the proper permission of NRC

Gas Turbine Plant Configurations

Integrated Gasification Combined Cycle with Polygeneration

Gasifier Types

Some IGCC Examples – US and Europe

Wabash R	iver, Indiana		Puertolleano, S	pain	
Tampa, Florida	Buggenum, Ti	he Netherlands			
Project / Location	Gasification Technology	Gas Turbine	Capacity (MWe)	Startup Year	
Wabash River / Indiana, USA	DOW-ConocoPhillips	GE-7FA	192	1995/2000	
Tampa Electric / Florida, USA	Tampa Electric / Florida, USAGE-Texaco		250	1996/2001	
Nuon Power, Demkolec / Buggenum, The Netherlands	Shell	Siemens – SGT5-2000E	253	1993/1998	
ELCOGAS / Puertollano, Spain	Uhde Prenflo	Siemens – SGT5-4000F	317	1996	

(Ref: Dennis, et al, 2007)

Some IGCC Examples – Canada

Project / Location	Gasification Technology	Gas Turbine	Capacity (MW)	Startup Year
OPTI-Nexen / Long Lake, AB	Shell	GE-7EA	170 (120/50)	2006
EPCOR Utilities / Genesee, AB	Siemens	Siemens	270	2015

Why IGCC with Polygeneration

- Lower CO₂ by 60~80%
- Lower air pollutants up to 95%
- Applicability to multiple sector
- Energy security through multiple feedstock
- Fuel flexibility through reduced reliance on natural gas and oil
- Simultaneous production of High-value by-products

NRC-CNRC

(Ref: EPCOR, 2008)

Gas Turbine Fuels – Conventional & Alternative

- Much tighter control (regulations) requirement on fuel specification in aviation gas turbines
- Requirement for industrial gas turbine – burn anything

LHV (MJ/kg)

(Ref: Wisniewski & Handelsman 2010)

Gas Turbine Fuels' Composition – Siemens' Experience

Gas Turbine Fuels' Properties – GE's Experience

	Main Constituents	LHV (MJ/m ³)		U/L Flammability Ratio	
		Min.	Max.	Min.	Max.
Natural Gas	CH_4 , C_2H_6	31.971	47.957	2.20	3.00
LPG	$C_{3}H_{8}, C_{4}H_{10}$	91.917	127.885	4.00	5.00
Air Blown Syngas	H_2 , CO, N_2 , H_2O , CO ₂	5.195	7.993	2.40	5.40
Oxygen Blown Syngas	H_2 , CO, H_2O , CO ₂	7,993	15.9 <u>8</u> 6	6.00	12.00
Blast Furnace Gas	H_2 , CO, N_2 , H_2O , CO ₂	2.997	4.996	1.50	3.00
Refinery Off-gas	$H_2, C_2H_6, C_3H_8, C_4H_{10}, C_2H_4, C_3H_6$	11.989	63.942	3.00	18.00
Coke Oven Gas	H_2 , CO, N_2 , H_2 O, CO ₂	11.989	19.982	6.00	8.00

Syngas Related Issues – Composition Variations

- Gasifier type
 - Oxygen vs. air blown
 - Dry vs. slurry fed
- Process temperature
- Feed rate
- Amount of Oxygen
- H:C ratio in feedstock

Composition (Volume %)	Coal-Gas	Bio-Gas	Natural Gas
Hydrogen (H ₂)	14.0%	18.0%	
Carbon Monoxide (CO)	27.0%	24.0%	
Carbon Dioxide (CO ₂)	4.5%	6.0%	
Oxygen (O ₂)	0.6%	0.4%	
Methane (CH ₄)	3.0%	3.0%	90.0%
Nitrogen (N ₂)	50.9%	48.6%	5.0%
Ethane (C ₂ H ₆)			5.0%
HHV (kJ/m ³)	6,417	5,315	39,450

Feedstock Variation

Process Variation

Composition (Volume %)	Min.	Max.	Avg.
Hydrogen (H ₂)	8.6	61.9	31.0
Carbon Monoxide (CO)	22.3	55.4	37.2
Carbon Dioxide (CO ₂)	1.6	30	12
Methane (CH ₄)	0	8.2	2.2
Nitrogen (N ₂) + Argon (Ar)	0.2	49.3	12.2
Water (H ₂ O)	0.1	39.8	7.8
Hydrogen/Carbon Monoxide Ratio	0.33	0.8	0.86

Fuel Constituents – Characteristic Values

		I HV	I HV	Flammabi (Vo	lity Limits I. %)	Autoignition	Laminar Flame Speed (cm/s)
		(MJ/m ³)	(MJ/kg)	Lean	U/L Ratio	()	
Methane	CH₄	36.447	50.048	5.00	3.00	537	44.8
Ethane	C_2H_6	64.862	47.511	3.00	4.13	472	47.6
Propane	C_3H_8	92.836	46.330	2.10	4.52	450	46.4
Butane	C_4H_{10}	120.651	45.725	1.80	4.67	462	44.9
Pentane	C_5H_{12}	148.586	45.343	1.40	5.57	284	43
Hexane	C_6H_{14}	176.441	44.925	1.20 🕈	6.17	225	
Carbon Monoxide	CO	12.828	10.113	12.50	5.92	609	52
Hydrogen	H_2	10.990	120.071	4.00	18.75	400	_325_

Fuel Flexibility Spread

Low reactivity fuels

(Ref: Wisniewski & Handelsman 2010)

Fuel Flexibility Challenge

- How does/can non-conventional (high vs. low reactivity) fuels affect gas turbine operation?
 - Combustion
 - Turbomachinery
 - Emissions
 - Hot gas path components
 - Maintenance
- Decision to utilize alternative fuels depends on these effects and the associated economics

Turbomachinery Issues

- Variation in enthalpy drop in the expansion
- Variation of the flow rate at turbine inlet and the effect on turbine compressor matching
- Variation in heat transfer coefficient on the turbine blades, affecting blade cooling performance

Important Combustor Performance Parameters

- Wide operability
 - Blow-off limits
 - Flashback and auto-ignition limits
 - Static and dynamic stability (spatial and temporal flame anchoring)
- Low emission
- Good turndown
- Durability

Fuel Composition Issues – Flame Blowoff

Conditions: U_0 =60 m/s, T=460K, P=4.4atm,

Fuel Composition Issues – Flame Flashback

Multiple flashback mechanisms

- In boundary layer
- In core flow
- Strong acoustic pulsations lead to nearly reverse flow
- Combustion induced vortex breakdown

Different fuel properties influence these mechanisms differently

- Strong dependence of turbulent flame speed on fuel composition
- Hydrogen influence on flashback

Fuel Composition Issues – Flame and
Combustion Stability

- Fuel composition variations influence
 - Flame shape
 - Flame standoff location
- Alteration in flame shape and location can worsen or improve combustor dynamics via $\tau_{convect}$

Fuel Composition Issues – Emissions

- Strongly dependant on composition
- Reactive fuel blends having high H₂ or C₂+ compositions
 - Increase NOx formation
 - Decrease CO formation at part load
- Fuels having high inert constituents
 - Reduce NOx formation
 - Increase concentration of CO and UHC in exhaust

Syngas Emissions

- Strongly dependant on composition
- In general syngas produce lower emissions for combined cycles
- VOC emissions low
- SOx emissions low
- CO emissions
 - Unburned syngas CO from insufficient mixing and equivalence ratio lower than ignition range
 - Incomplete combustion of HC contents
- NOx emissions
 - Thermally generated: Increase with increase in H2 contents due to higher firing temperatures. Decrease with increase in H2 contents due to leaner combustion potentials
 - Flame-generated: Increase with increase in H2 contents due to higher flame temperatures
 - Fuel-bound: Increase if ammonia not removed prior to combustion.
 Decrease if burned rich.
 - Increase with increase in CO:H2 ratio

Dry Low NOx Operation within Emissions & Dynamics Limits

Effects on Hardware Changeability & Durability

- Increased fuel reactivity causes thermal distress to premixer and hot gas-path components due to:
 - Higher flame temperature and flashback propensity
 - Susceptibility to high temperature thermoacoustic pressure oscillations
- High reactivity fuels require
 - Alternate fuel as well as purging system for starting and shutdown
- Reduced fuel reactivity due to addition of Inerts require
 - Larger sized injectors to compensate for higher fuel flow rate requirement
- Reduced fuel reactivity cause hardware distress due to
 - Low temperature combustion dynamics
- Syngas use may cause increased component corrosion

Solutions to Fuel Flexibility Challenge – Rolls-Royce Experience

Series Staging

- Simple control system with only 4 fuel control valves
 - diffusion, primary and secondary (2) VSS
- Diffusion circuit allows for reliable starting
- Primary and secondary enables individual zone temperature control.
 - This gives flexibility for optimum emissions control.

Series Staging– Operational Mapping

(Ref: Rolls-Royce, 2011)

For more information on the presented material, please contact:

Dr. Wajid Ali Chishty

Gas Turbine Laboratory, Institute for Aerospace Research National Research Council Canada 1200 Montreal Road, M-7, Ottawa, ON K1A 0R6 Tel: (613) 993-2731, Fax: (613) 957-3281 <u>Wajid.Chishty@nrc-cnrc.gc.ca</u>

