13-IAGT-101

^{20th} SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES

DEVELOPMENT OF THE RB211-Gzero AFTERMARKET POWER UP-RATE

by

Cristiano Balestrino

Rolls-Royce Canada

Presented at the 20th Symposium on Industrial Application of Gas Turbines (IAGT) Banff, Alberta, Canada - October 2013

The IAGT Committee shall not be responsible for statements or opinions advanced in technical papers or in symposium or meeting discussions.

RB211-Gzero upgrade

- ✓ Retrofit for RB211 –C and –G
- \checkmark +10% power, no hot end mods
- ✓ Maintained efficiency

- ✓ Applied at scheduled overhaul
- ✓ "Plug and play" engine swap
- ✓ Maintained reliability & operability

RB211-Gzero product released in 2013 Existing RB211-G hot end Upgraded Gzero cold end

Agenda

Product rationale

- Design features
 - **Engine Development Program**
- Verified product attributes
- Conclusions

Rolls-Royce aero-derivative GT

Aero core plus free power turbine

LP Booster integrated 3 shaft gas turbine

Industrial RB211

- Over 32 Million hrs accumulated to date
- Many upgrades and improvements since initial introduction in 1970's

RB211 / Trent product families

Power growth

RB211 modular architecture

- Only front-end modules modified by the Gzero upgrade
- Increased core flow capacity
- Power increase achieved without hot end modifications

Engine cold end upgrade

Module 01- Air Inlet Casing

IP Compressor – rotor assembly

- Rotor 1 disc replaced with new 0 & 1 stage drum assembly
- Titanium discs and blades to maintain optimal rotor dynamics
- Discs and blades of rear stages (2 -7) left unchanged

IP Compressor – blades & vanes

- Titanium blades (0 & 1), SS vanes
- Blades have Elliptical Leading Edge, optimized by CFD for high efficiency
- Bench tested for HCF strength
- Three variable geometry stages

IPC design optimization

- Aerodynamics optimized by 1D, 2D and 3D CFD using latest tools for increased IPC flow and efficiency, and preserved surge margin
- Vibration response of all blades & vanes to pressure forcing from upstream & downstream stages simulated with proprietary tool
- Stator incidence angles optimized to minimize vibration response
- Stress analysis completed with 3D FEA tools
- Avoided need for complex on-engine strain gauge testing

Variable geometry actuation

Package and Power Turbine modifications

Gzero Development Engine Timeline

Feb 2012 – All H/W in store

May 2012 – Development Engine Build Complete

Gzero Engine in Montreal Test Bed

Jun 2012 – Sep 2012: Gzero Engine Development Program

Engine Instrumentation

More than 1200 parameters recorded:

- Inter-stage instrumentation (temperature and pressure survey) in new IP Compressor for full characterization
- "Blade Tip Timing" laser probes to measure the vibration response of the new IP compressor blades while running
- Inlet air meter for accurate measurement of core flow
- Fast response dynamic pressure probes to detect the onset of compressor stall
- Capacitance probes for real-time monitoring of Compressor blade Tip Clearances
- Accurate position measurement of new variable geometry stator vanes
- Strain gauges / accelerometers
- ...and more

Gzero Engine Development Program

On-engine IPC mapping tests Surge line prediction Fast stop with bleeds forced closed 2. High power clearance of surge margin to clear 1. Low power surge (no actual surge points) line mapping, VSV schedule optimization **Operational worst** case (margin to clear) Constant speed **IPC** working lines characteristics purposedly raised with calibrated end nozzles **Normal IPC** working line

Test results – IPC performance

IPC flow function

Compressor blade vibration

- Blade response to engine forcing monitored real time with "tip timing" optical probes across entire range
- Data processed to calculate "endurance ratios" of blade response vs. HCF strength
- Max response less than half the HCF initiation threshold
- Pre-test analysis confirmed HCF not an issue

Verified technical attributes

Attribute	Target	Result	Data
Power growth	+ 10% or more	\checkmark	Slightly better than expected. Opportunity to grow beyond initial 10%.
Surge margin	To clear operational worst case	\checkmark	IPC stack-up cleared by extensive testing. HPC surge margin maintained.
Efficiency	No less than 24G	\checkmark	Higher than 24G.
Gas Generator Exit Temperature (TGT)	No higher than 24G	\checkmark	Lower than 24G.
Operability	No worse than 24G	\checkmark	Fuel transfers OK, no auto- ignition. Load step capability maintained.

Conclusions

- Gzero provides 10% power increase for existing RB211 without hot end modifications
- Focused introduction of today's best technology into a proven engine core
- "Plug-and-play" aftermarket upgrade
- Product attributes verified by extensive testing
- Novel analysis & test techniques successfully utilized to reduce development risk & lead time
- Verification program complete, Demonstrator Engine available

THANK YOU

