

www.iagtcommittee.com

October 23rd - 25th, 2017, Banff, Alberta

QUEEN ELIZABETH POWER STATION EXPANSION

A CLEAN, FLEXIBLE, AND RELIABLE CCGT APPLICATION

By

L. Todd Shaw, P.Eng. - Mitsubishi Hitachi Power Systems Americas

&

Landon Tessmer, P.Eng. - Innovative Steam Technologies

17-IAGT-102

Queen Elizabeth Power Station Overview

- Location: Saskatoon, SK
- Originally commissioned in 1959 with 2 steam turbines 123 MW (total)
- In 1971, a 95 MW steam turbine was commissioned 218 MW
- Today, the facility contains an additional 12 combustion turbines, 12 heat recovery steam generators (OTSGs), and 2 steam turbines
- 634 MW Net (2nd largest in MW and most GTs of any CC plant in Canada)

QEP - Plant D Addition

- Commissioned Oct. 2015
- 204 MW expansion of the facility
- Added the final three H-25 gas turbines and closed the loop on six H-25 gas turbines with six OTSGs and a steam turbine
- Provides enough electricity for 200,000 homes
- Produces less than half the green house emissions of conventional coal

Combined Cycle Plant Overview

QEPS - 204MW Expansion Technical Summary

Plant D Commercial Operation Date: 2015

Existing Equipment:

- 3 direct Fired NG Boilers feeding 2 steam turbines (218MW) first 2 decommissioned
- Six (6) Hitachi H-25(28*) Gas Turbines in Combined Cycle, with six (6) OTSGs and two (2) Steam Turbines (210MW)
- Three (3) Hitachi H-25(35) Gas Turbines in Simple Cycle (105 MW)

Plant D Addition (204MW):

- Three (3) new Hitachi H-25(35) Gas Turbines in Combined Cycle, with IST OTSGs
- Six (6) new IST OTSG's to close the cycle for all H-25(35) Gas Turbines
- One (1) Fuji 100MW Steam Turbine

Ambient Conditions:

- Temperature: -40°C to 40°C (Design T = 15°C)
- Elevation: 480 meters AMSL
- Relative Humidity: 60%

H-25(35) Gas Turbine – Site Performance:

- Output = 31.4 MW per Unit (at generator terminal)
- Exhaust Temperature = 552°C
- Exhaust Flow = 103 kg/s
- NOx Emissions = 25 ppmvd@15% O₂

OTSG - Site Performance:

- HP Steam: 13.2 kg/s, 506°C, 86 bar
- LP Steam: 2.8 kg/s, 224°C, 6 bar
- 6x flow produces roughly 100MW at STG

^{*} Denotes the turbine output class in MW

MHPS H-Series Gas Turbines

Predictability & Reliability through Evolution

H-25 Gas Turbine Models

Worldwide Fleet of 176 Units
 Over 6.3 Million AOH
 >99% Fleet Reliability

H-25 Supply Experience

• A variety of applications in different markets, such as petrochemical, utility & independent power producer, district heating, industrial, etc.

H-25 Gas Turbine Specification

- Reliable Heavy Duty Design
- Horizontal Split Casing
- Single Shaft Configuration

Reduction Gear for 50 Hz and 60 Hz

Turbine

3 stages Impulse Type

Rotating Speed: H-25: 7,280 rpm

Hot End or Cold End Drive

H-25 Gas Turbine Fuel Flexibility

•H-25 Combustors enable fuel flexibility, including LNG, NG, LPG, H2 Rich Fuels & Oil.

	Туре	Fuel	NOx[ppm]	Combustor
	Multi-cluster	LNG	15	
		LPG	74	Low NOx and flame stability with rapid mixing
	Cone-cluster	Gas/Oil Dual	25(Gas) 74(Oil)	
	DLE (F2 Pencil)	LNG/NG	25	F2 Pencil
	Conventional	Gas/Oil Dual	25(Gas) 300(Oil)	
		LPG	74	Dual (LNG / Distillate Oil) Diffusion(LPG)

Multi-Cluster Combustor

Advancement in Combustor Technology

Single can, DLN combustor with multiple fuel/air injection nozzles

Multi-Cluster Burner Principles

- 1. Rapid mixing with fuel-air coaxial jets
- 2. Flame lifting by converging-diverging swirl flows with multiple nozzles
- 3. Inherently Flashback Free

Pilot Burner

Flame Observation

H-25 Maintenance Inspection

Inspection Type	Typical Interval (EOH), hrs	Reference Operation 1)	Downtime
1 Combustion Inspection	16,000 (Natural Gas fuel) 12,000 (Oil fuel)	2 years	7 days
2 Hot Gas Path Inspection	32,000 (Natural Gas fuel) 24,000 (Oil fuel)	4 years	16 days
3 Major Inspection	64,000 (Natural Gas fuel) 48,000 (Oil fuel)	8 years	25 days

^{1) 8000} hours/year continuous operation Case

^{*} Cool downtime (1 days) and start-up (1~2 days) are not included in downtime.

Scheduled Maintenance

Availability of 97.6% based on fleet reliability of over 99%.

^{*} Interval & downtime is subject to operating cycle and conditions, etc.

- OTSG is a type of HRSG with the following key differentiators
 - 1. Drumless design: OTSG = Once-Through Steam Generator
 - 2. Dry-run capable: All internal metallurgy is designed to accept the full gas turbine exhaust temperature while the OTSG is empty and dry.
 - Simple Controls: Half the valves and instruments of a traditional HRSG
 - 4. Ultra-modular Installation: 5 major pieces to be assembled on site

1. Drumless Design

2. Dry-Run Capable OTSG

Top Support Beams -Gr. 91

Finned Tubes –

Haynes 230 and Inconel 800

Tubesheets

- Gr. 91

Tubes – Haynes 230 and Inconel 800

Flex Tubes

LP Feedwater Header

- Inconel 810

HP Feedwater Header

- Inconel 810

LP Steam Header

-Gr. 22

V-Seals

-316SS

HP Steam Header

- Gr. 91

2. Dry-Run – Impact on Footprint

2. Dry-Run – Impact on Footprint

3. Simplicity

HP Feedwater Inlet Piping

HP Steam Outlet Piping

4. Modularity

4. Conclusions

QEPS has become a large scale power production facility with industry-leading efficiency and reliability while still boasting operational flexibility through redundancy and equipment selection.

Thank you for your time.

Questions?

