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AT Appheaon
of Gaa Turbines

For a given size, the goal is to provide a product offering to potential
users that make their operation successful. This includes features that
allow for:

« High Reliability and Availability

* Low Emissions

« High Efficiency

« High Power Density

» Attractive first cost and operating cost
« High operational flexibility

+ Life cycle support

AT Appheaon
of Gaa Turbines

A wider definition of efficiency
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Experimental Methods
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Overview

» Stress

Non-Intrusive Stress
Measurement System
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+ Measures Blade Deflections in Engine Real-time

+ Evaluate Rotor Modal Response and Blade Stresses Levels
ENGINE CASING
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Conclusions

Ultimately, any product is only successful if it adds to the success of
its users. Any technology advance has to be judged by this criteria.
What do the technologies described offer the gas turbine
operator?

If the emissions levels don’'t meet the regulators requirement, the
engine cannot be operated.

Low fuel consumption, high power density, high availability and
reliability, and low maintenance costs all add to the economic
success of compression projects.

In a broader sense, in an increasingly competitive marketplace, user
acceptance of gas turbine systems will be under increased scrutiny
for economic and environmental benefit.

Technology advances create user benefits
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