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TITAN 250 GAS TURBINE DEVELOPMENT
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Solar Turbines Incorporated 

Titan 250 driving
a C85 pipeline compressor

Titan 250

• 30,000 hp
• 40% Thermal Efficiency
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For a given size, the goal is to provide a product offering to potential 
users that make their operation successful. This includes features that 
allow for: 

• High Reliability and Availability

• Low Emissions

• High Efficiency

• High Power Density

• Attractive first cost and operating cost

• High operational flexibility

• Life cycle support

A wider definition of efficiency
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Material Science
Improved Knowledge of Local 
Temperatures in the hot section 
under actual operating conditions

Computational Fluid Dynamics 
(CFD)
Advance Measurement 
Technologies: irradiated Crystal 
Sensor Method 

Increased efficiency
increased power density

Higher Firing 
Temperatures
As Little Cooling as 
Possible

Engine Life and Reliability

Trade-Offs
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Heat Transfer and Cooling

Practical Examples of Blade 
Cooling Concepts:
Convection/Impingement Cooling 
(left), and film cooling (right)

Blade Cooling Effectiveness

CFD Application
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CFD Simulation of Disk Cavity Ingress

90 Degree Sector Model
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Experimental Methods

• Thermal paint

• Temperature 
Plugs

• Pyrometers

• IMTK Crystals 

IMTK Crystal 
Nichrome Foil

IMTK   
Crystal 

Component Wall 

HOT 
GASES 

COOLING AIR 

Filler 

IMTK Crystal Installation

Instrumented 
Blade

20



10/6/2017

10

Overview
• Requirements

• Trade-Offs

• Heat Transfer and Cooling

• Experimental Methods

• Stress

• Fuel Capability

• Conclusions

Non-Intrusive Stress 
Measurement System
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Product Testing and Validation
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Conclusions
• Ultimately, any product is only successful if it adds to the success of 

its users. Any technology advance has to be judged by this criteria.

• What do the technologies described offer the gas turbine 
operator?

• If the emissions levels don’t meet the regulators requirement, the 
engine cannot be operated.

• Low fuel consumption, high power density, high availability and 
reliability, and low maintenance costs all add to the economic 
success of compression projects. 

• In a broader sense, in an increasingly competitive marketplace, user 
acceptance of gas turbine systems will be under increased scrutiny 
for economic and environmental benefit.

• Technology advances create user benefits


