TITAN 250 GAS TURBINE DEVELOPMENT Ву Rainer Kurz, Mark Knodle, Carlos Aylwin and Jim Raeside Solar Turbines Incorporated Presented at the 2017 Symposium on Industrial Application of Gas Turbines (IAGT) Banff, Alberta, Canada - October 2017 The IAGT Committee shall not be responsible for statements or opinions advanced in technical papers or in symposium or meeting discussions. ## Overview - Requirements - Trade-Offs - Heat Transfer and Cooling - Experimental Methods - Stress - Fuel Capability - Conclusions ## Overview - Requirements - Trade-Offs - Heat Transfer and Cooling - Experimental Methods - Stress - Fuel Capability - Conclusions For a given size, the goal is to provide a product offering to potential users that make their operation successful. This includes features that allow for: - · High Reliability and Availability - Low Emissions - High Efficiency - High Power Density - · Attractive first cost and operating cost - · High operational flexibility - · Life cycle support ## Overview - Requirements - Trade-Offs - Heat Transfer and Cooling - Experimental Methods - Stress - Fuel Capability - Conclusions # Overview - Requirements - Trade-Offs - Heat Transfer and Cooling - Experimental Methods - Stress - Fuel Capability - Conclusions ## Conclusions - Ultimately, any product is only successful if it adds to the success of its users. Any technology advance has to be judged by this criteria. - What do the technologies described offer the gas turbine operator? - If the emissions levels don't meet the regulators requirement, the engine cannot be operated. - Low fuel consumption, high power density, high availability and reliability, and low maintenance costs all add to the economic success of compression projects. - In a broader sense, in an increasingly competitive marketplace, user acceptance of gas turbine systems will be under increased scrutiny for economic and environmental benefit. - Technology advances create user benefits