

www.iagtcommittee.com

October 23<sup>rd</sup> - 25<sup>th</sup>, 2017, Banff, Alberta

#### Air Filtration Study For The Optimum Performance of Gas Turbines

Syed Hasan Union Gas Limited

**mion**gas

by

Joshua Kohn Camfil Power Systems



Presented at the 2017 Symposium on Industrial Application of Gas Turbines (IAGT) Banff, Alberta, Canada - October 2017 The IAGT Committee shall not be responsible for statements or opinions advanced in technical papers or in symposium or meeting discussions.



# Topics

- Introduction
- Testing and Results
- Comparison M6 vs F9
- Cost Benefit Analysis
- Process Improvement
- Conclusion and Questions



# Introduction

- Objective
- Southwestern On.
- Corridor 257 km
- Power 435 MW
- No. of Air Filters 4000
- Air Filters Brands, Types
- Centrifugal Units 23
- Recips 14





# PM2.5 Air Quality – Ontario



\* Air Quality in Ontario 2015 Report, Ministry of the Environment and Climate Change



## Scope of Analysis



2x side by side RB211 gas turbines



Replace inlet filters, measure impact



#### **On-Site Measurement Devices**







# Air Quality at Site







#### Air Inlet Filter Efficiency





#### Filter Efficiency Recap

IAG

YMPOS

S

• 17

| Classification of air filters <sup>1)</sup> |       |                                  |                                                                |                                                                      |                                                                  |  |  |
|---------------------------------------------|-------|----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Group                                       | Class | Final pressure<br>drop (test) Pa | Average<br>arrestance (A <sub>m</sub> )<br>of synthetic dust % | Average<br>efficiency (E <sub>m</sub> )<br>for 0.4 μm<br>particles % | Minimum<br>efficiency <sup>2)</sup><br>for 0.4 μm<br>particles % |  |  |
| Coarse                                      | G1    | 250                              | $50 \leq A_{\rm m} < 65$                                       | -                                                                    | -                                                                |  |  |
|                                             | G2    | 250                              | $65 \leq A_{\rm m} < 80$                                       | -                                                                    | -                                                                |  |  |
|                                             | G3    | 250                              | $80 \leq A_{\rm m} < 90$                                       |                                                                      | -                                                                |  |  |
|                                             | G4    | 250                              | $90 \leq A_{\rm m}$                                            | -                                                                    | -                                                                |  |  |
| Medium                                      | M5    | 450                              | -                                                              | $40 \le E_{m} < 60$                                                  | _                                                                |  |  |
|                                             | M6    | 450                              | -                                                              | $60 \leq E_{\rm m} < 80$                                             | -                                                                |  |  |
| Fine                                        | F7    | 450                              | -                                                              | $80 \leq E_{\rm m} < 90$                                             | 35                                                               |  |  |
|                                             | F8    | 450                              | _                                                              | $90 \le E_{m} < 95$                                                  | 55                                                               |  |  |
|                                             | F9    | 450                              | -                                                              | 95 ≤ E <sub>m</sub>                                                  | 70                                                               |  |  |



#### Water Wash Analysis

| Engine | Soak<br>Wash Date | Runtime<br>Between<br>Washes (hours) | TSS (mg/L) | TSS per 1,000 firing hours<br>(mg/L) |
|--------|-------------------|--------------------------------------|------------|--------------------------------------|
| A1     | 07-Mar-14         | 1,300                                | 230        | 177                                  |
| A1     | 29-Jan-15         | 1,853                                | 220        | 119                                  |
| A2     | 18-Dec-13         | 1,000                                | 360        | 360                                  |
| A2     | 19-Mar-14         | 976                                  | 360        | 369                                  |

17

M P O



| A1 Average: | 148 mg/L per 1,000 fired hours |
|-------------|--------------------------------|
| A2 Average: | 364 mg/L per 1,000 fired hours |



# **Cost- Benefit Analysis**

- Fuel
- Filters
- Pressure Drop
- Soak washes



- Data (Power and fuel) for various speeds for both normal and post wash (7 days) operations
- Heat rates at corrected speeds for both operations (normal – I; Post wash –II)
- Performance for A1 and A2 units
- Weighted average degradation
- Fuel saving

Fuel savings = Fuel Consumption (m<sup>3</sup>/hr) x Fuel cost (cad/m<sup>3</sup>) x Run time (hrs) x Degradation improvement (%)

Heat Rate =  $\frac{Fuel \ input \ (KW)}{Energy \ output \ (KW)}$ 

 $\mathsf{Perf} = \frac{Degrad.Perf - Clean Perf}{Clean Perf}$ 

$$\mathsf{Perf} = \frac{\text{Heat rate I} - \text{Hea rate II}}{\text{Heat rate II}}$$

A1= -0.3 % ; A2= -2.2%



- Data for temperatures and pressures before and after
- Eff at corrected speeds for before and after soak wash

$$Compr Eff = \left(\frac{Temp \ Inlet}{Temp \ Outlet - Temp \ Inlet}\right) \times \left(\frac{Pressure \ Outlet}{Pressure \ Inlet}\right)^{\frac{0.4}{1.4}} - 1$$

• Calculated performance for both A1 and A2 units

 $Perf = \frac{Degrad. Perf - Clea Perf}{Clean Perf}$  $Perf = \frac{Post Wash Eff - Avg Eff}{Post Wash Eff}$ 

Weighted avg degradation

A1= 0.2 % ; A2= 1.2%



Soak washes

- Fixed intervals of 1000 hours
- Typical soak wash costs \$ 2000 to \$ 5000 depending upon the size of the unit.
- Reduction in number of soak washes as much as half over typical 20,000 hour filter lifetime based on the test results (TSS)



#### **Overall Cost Analysis**

IAG

SYMPOS

•• 17

| Item                        | Description                               | Cost Impact (CAD) –<br>per 20,000 hours |
|-----------------------------|-------------------------------------------|-----------------------------------------|
| Heat Rate Improvement       | Improvement of 1.9% of fuel budget        | -\$320,000                              |
| Pressure Drop Penalty       | Cost of 0.03" wg additional pressure drop | +\$2,400                                |
| Reduced Maintenance Demands | Savings from 10 fewer soak washes         | -\$50,000                               |
| Excess Filter Cost          | Additional filter costs for upgrade       | +\$12,500                               |
| Total:                      |                                           | -\$355,100                              |



# **Process Improvement**

- Check the environment (reports or field testing)
- Operating conditions (fixed speed or varying speed)
- Select filters that fit the operating conditions and environment
- Bring consistency in terms of types and brands of filters
- Shift towards predictive maintenance
  - Air compressor efficiency
  - Heat rate
  - CDP
  - Thermal efficiency
  - Testing of soak wash samples



# Conclusion & ???