

2018 FALL WORKSHOP

Gas Turbine Energy Systems: Clean and Reliable Energy on Demand

October 23, 2018 | Ottawa

TRAINING SESSION 5 GAS TURBINE PRICING & PROJECT COSTS

Jim Noordermeer, P.Eng. Noord Power Consulting Inc.

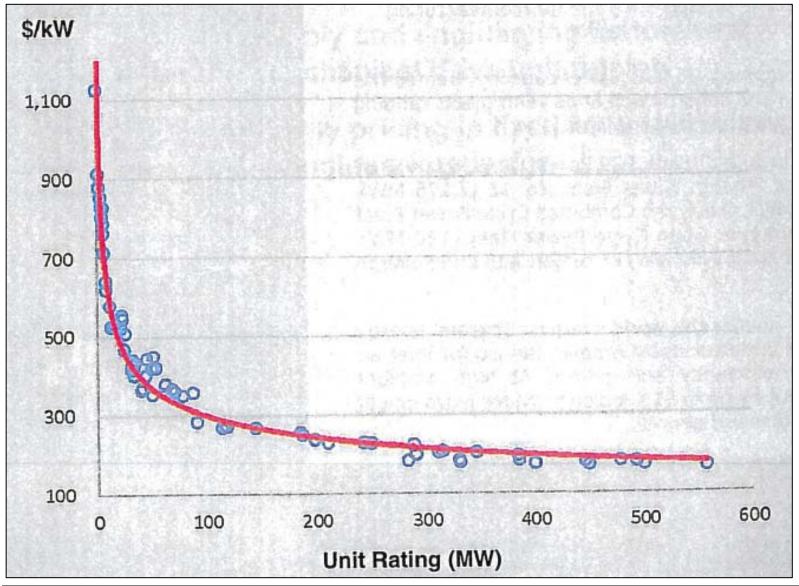
Presented at the 2018 Gas Turbines for Energy Network (GTEN) Fall Workshop in Ottawa - October 2018.

The GTEN Committee shall not be responsible for statements or opinions advanced in technical papers or meeting discussions.

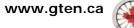
2018 Simple Cycle Genset Prices

Equipment-only budget pricing, in fixed 2018 US dollars, for standard bare bones design

OEM Model	Freq Hz	Base Load Rating	Heat Rate Btu/kWh	Efficiency	Budget Price	\$/kW
C200	50/60	200 kW	10,300 Btu	33.1 %	\$225,000	\$1,125
M1A-17D	50/60	1,700 kW	12,701 Btu	26.9 %	\$1,550,000	\$912
OP16-3C	50/60	1,876 kW	13,585 Btu	24.7 %	\$1,650,000	\$880
Centaur 40	50/60	3,515 kW	12,240 Btu	27.9 %	\$3,000,000	\$853
501-KB5S	50/60	3,980 kW	11,504 Btu	29.7 %	\$3,300,000	\$829
Centaur 50	50/60	4,600 kW	11,630 Btu	29.3 %	\$3,700,000	\$804
501-KB7S	50/60	5,380 kW	10,570 Btu	32.3 %	\$4,450,000	\$827
SGT-100	50/60	5,400 kW	11,007 Btu	31.0 %	\$4,250,000	\$787
Taurus 60	50/60	5,670 kW	10,830 Btu	31.5 %	\$4,320,000	\$762
Taurus 65	50/60	6,300 kW	10,375 Btu	32.9 %	\$4,500,000	\$714
SGT-300	50/60	7,901 kW	11,158 Btu	30.6 %	\$4,900,000	\$620
Taurus 70	50/60	7,965 kW	9,955 Btu	34.3 %	\$5,100,000	\$640
Mars 100	50/60	11,350 kW	10,365 Btu	32.9 %	\$6,550,000	\$577
GTU-12PG-2	50/60	12,300 kW	10,469 Btu	32.6 %	\$6,460,000	\$525
SGT-400	50/60	14,326 kW	9,647 Btu	35.4 %	\$7,500,000	\$524
Titan 130	50/60	16,450 kW	9,605 Btu	35.5 %	\$8,750,000	\$532
Titan 250	50/60	21,745 kW	8,775 Btu	38.9 %	\$11,350,000	\$522
LM2500DLE 50Hz	50	22,400 kW	9,626 Btu	35.4 %	\$12,400,000	\$554
LM2500DLE 60Hz	60	23,200 kW	9,317 Btu	36.6 %	\$12,650,000	\$545
SGT-600	50/60	24,480 kW	10,161 Btu	33.6 %	\$11,450,000	\$468
1x FT8 SP25 DLN	60	25,371 kW	8,993 Btu	38.1 %	\$12,900,000	\$508
1 x FT8 SP30	60	30,892 kW	9,327 Btu	36.6 %	\$12,875,000	\$417
LM2500+ DLE 60H	z 60	31,900 kW	8,785 Btu	38.8 %	\$13,650,000	\$428
RB211-GT61 DLE	50/60	32,130 kW	8,681 Btu	39.3 %	\$14,170,000	\$441
SGT-700	50/60	32,820 kW	9,170 Btu	37.2 %	\$13,650,000	\$416
MS5002E	50/60	33,310 kW	9,517 Btu	35.9 %	\$13,400,000	\$402
LM2500+ G4 DLE	60	34,500 kW	8,709 Btu	39.2 %	\$14,950,000	\$433
SGT-750	50/60	39,810 kW	8,456 Btu	40.4 %	\$14,525,000	\$365
H-25	50/60	41,030 kW	9,432 Btu	36.2 %	\$15,100,000	\$368
6B.03	50/60	44,000 kW	10,180 Btu	33.5 %	\$17,650,000	\$401
LM6000 DLE	60	45,000 kW	8,097 Btu	42.1 %	\$20,000,000	\$444
LM6000 DLE Sprin	t 60	50,000 kW	8,097 Btu	42.1 %	\$21,000,000	\$420
SGT-800	50/60	50,500 kW	8,899 Btu	38.3 %	\$17,800,000	\$352


SC Prices

OEM Model	Freq Hz	Base Load Rating	Heat Rate Btu/kWh	Efficiency	Budget Price	\$/kW	
2xFT8 SP50 DLN	60	51,058 kW	8,938 Btu	38.2 %	\$23,000,000	\$450	
LM6000 SAC	60	53,000 kW	8,175 Btu	41.7 %	\$22,250,000	\$420	
SGT-A65 TR DLE	60	54,020 kW	8,023 Btu	42.5 %	\$22,750,000	\$42	
2xFT8 SP60	60	62,086 kW	9,281 Btu	36.8 %	\$22,100,000	\$356	
SGT-A65 DLE ISI	60	61,842 kW	7,867 Btu	43.4 %	\$23,450,000	\$379	
LM9000	50/60	68,000 kW	8,107 Btu	42.1 %	\$25,000,000	\$368	
1xFT4000 SP60	60	70,836 kW	8,269 Btu	41.3 %	\$25,500,000	\$360	
AE64.3A	50/60	78,000 kW	9,400 Btu	36.3 %	\$27,500,000	\$353	
6F.03	50/60	87,000 kW	9,340 Btu	36.5 %	\$31,100,000	\$357	
7E.03	60	91,000 kW	10,060 Btu	33.9 %	\$25,750,000	\$283	
M501DA	60	113,950 kW	9,780 Btu	34.9 %	\$30,500,000	\$268	
SGT6-2000E	60	117,000 kW	9,705 Btu	35.2 %	\$31,900,000	\$273	
LMS100 Wet	60	118,000 kW	7,628 Btu	44.7 %	\$40,000,000	\$339	
H-100	50	118,080 kW	8,919 Btu	38.3 %	\$32,000,000	\$27	
M701DA	50	144,090 kW	9,810 Btu	34.8 %	\$38,600,000	\$268	
AE94.2	50	185,000 kW	9,426 Btu	36.2 %	\$47,400,000	\$256	
M501F	60	185,400 kW	9,230 Btu	37.0 %	\$47,000,000	\$254	
SGT5-2000E	50	187,000 kW	9,426 Btu	36.2 %	\$46,500,000	\$249	
7F.04	60	198,000 kW	8,840 Btu	38.6 %	\$47,000,000	\$237	
GT13E2	50	210,000 kW				C 1 (1) (1)	
7F.05	60	243,000 kW	8,980 Btu 8,570 Btu	38.0 % 39.8 %	\$48,000,000 \$55,500,000	\$229 \$228	
SGT6-5000F	60	250,000 kW	0.000 Dt.	00.0.0V	¢50 750 000	\$00	
9F.04	60		8,682 Btu	39.3 %	\$56,750,000	\$227	
	50	288,000 kW	8,810 Btu	38.7 %	\$64,000,000	\$222	
M501GAC	60	283,000 kW	8,531 Btu	40.0 %	\$51,250,000	\$181	
7HA.01	60	290,000 kW	8,120 Btu	42.0 %	\$57,500,000	\$198	
SGT6-8000H	60	310,000 kW	8,530 Btu	40.0 %	\$63,000,000	\$203	
9F.05	50	314,000 kW	8,930 Btu	38.2 %	\$65,000,000	\$207	
SGT5-4000F	50	329,000 kW	8,322 Btu	41.0 %	\$60,000,000	\$182	
M501J	60	330,000 kW	8,105 Btu	42.1 %	\$58,500,000	\$177	
GT26	50	345,000 kW	8,322 Btu	41.0 %	\$70,000,000	\$203	
7HA.02	60	384,000 kW	8,030 Btu	42.5 %	\$75,000,000	\$195	
M701F	50	385,000 kW	8,144 Btu	41.9 %	\$70,000,000	\$182	
M501JAC	60	400,000 kW	7,755 Btu	44.0 %	\$69,250,000	\$173	
SGT5-8000H	50	450,000 kW	<8,322 Btu	>41 %	\$76,500,000	\$170	
9HA.01	50	446,000 kW	7,910 Btu	43.1 %	\$80,000,000	\$179	
M701J	50	478,000 kW	8,067 Btu	42.3 %	\$86,000,000	\$180	
M701JAC	50	493,000 kW	7,954 Btu	42.9 %	\$88,000,000	\$178	
GT36	50	500,000 kW	8,222 Btu	41.5 %	\$85,000,000	\$170	
9HA.02	50	557,000 kW	7,760 Btu	44.0 %	\$92,000,000	\$165	


GAS TURBINE PRICING & PROJECT COSTS

GAS TURBINE PRICING - from the 2018 Gas Turbine Handbook[®] (\$USD)

Simple-Cycle GTG Prices - not total "project cost"

Jim Noordermeer, P.Eng. Noord Power Consulting Inc. 2018 GTEN Fall Workshop - Ottawa Gas Turbine Pricing & Project Costs

2018 Simple Cycle Genset Prices

Scope of supply and engineering factors that enter into simple cycle genset equipment pricing

How much does a packaged simple cycle gas turbine plant cost? All depends on unit size, design technology and scope of equipment supply.

GTW's database covers a wide range of unit size and technology which shows that price (\$) and unit price (\$ per kW) depend strongly on unit size and type of gas turbine (aero vs frame).

GTW's simple cycle plant prices are based on standard bare bones single-fuel (gas only) packaged units. A myriad of add-on options and customized design features are provided by OEMs at additional cost.

The prices are quoted in US dollars, FOB factory, for single-unit purchases. They are for equipment only,

2018 Simple Cycle Gensets

and do not cover transportation, plant engineering, construction, projectspecific options or owner's project costs.

Price update. Except for some individual cases where new information from the marketplace has indicated otherwise, this year's estimated gas turbine prices reflect a slight upward trend (~3%) compared to last year's data.

Despite a softening market for large utility units in North America, this follows the observed movement of the cost indexes for industrial and power generation equipment (see https://www.ihs.com/info/cera/ihsindexes/).

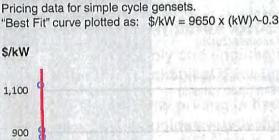
500

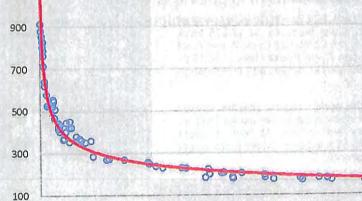
600

However, considering the significant over-capacity of manufacturing space for larger gas turbine units, the trend in pricing may very well turn downward.

A relatively flat US dollar relative to major international currencies during the current period has also meant little influence of currency exchange rates on price levels (in US\$) for equipment manufactured in Europe and Asia.

Equipment scope. Limited to minimum scope of supply for a simple cycle power generating plant package built around a gas turbine, generator, associated mechanical and electrical auxiliary systems, including controls. Scope includes:


• Gas turbine. Skid-mounted gas turbine engine, starting motor, reduction gearbox (if any), lube oil and hydraulic fluid systems, compressor water wash, fuel forwarding and control, external turbine cooling (if any), interconnecting piping.


• Generator. Standard air-cooled generator package; hydrogen or enclosed water-air cooling (TEWAC) usually offered as options for larger units. Generator exciter is typically included in the standard package.

• Balance of plant. Standard auxiliaries such as air intake filter, inlet ducting and silencer, exhaust ducting and stack (short) with silencer, vibration monitoring, digital control system.

Packaged gensets typically include standard acoustic enclosures with ventilation and fire protection systems.

Mechanical and electrical auxiliaries for gas turbine operation are often

200

300

Unit Rating (MW)

400

2017-18 GTW Handbook

0

36

100

pre-packaged and supplied as separate enclosed auxiliary skids. Electrical auxiliaries include batteries, motor control center, voltage regulator and surge protection.

Auxiliary transformers needed to condition power supply for plant motors (starting, lube oil pump and cooling fans) are usually optional, as is main power step-up transformer.

Other OEM options include liquid or dual-fuel (gas and liquid) combustion, inlet air chilling (or deicing), isolated phase bus, fuel gas compression, etc.

Price and performance. Gas turbine model power output and efficiency ratings in GTW's simple cycle pricing tables are OEM specified design ratings for base load operation at ISO standard (59°F ambient and sea level) conditions on natural gas fuel.

Estimated unit price (\$ per kW), based on base load ratings, makes it possible to review and evaluate differences in unit pricing of equipment cost of similarly sized units.

A best-fit relationship between S-per-kW and kW rating for listed models is provided and plotted to assist in calculating the cost of comparably sized models not listed.

Besides unit size, other factors that enter GT package price are gas turbine type (i.e., frame vs. aero) and engineering design factors such as firing temperature, pressure ratio, and mass flow.

Actual real-world OEM bid prices are quoted for customer-specified scope and with guarantees on net power and heat rate (efficiency) at site-specific conditions (i.e. ambient temperature, elevation and relative humidity) and specified fuel composition.

Bid quotes. OEMs strategically hedge project bidding with some performance margin, i.e. slightly lower power output and higher heat rate, to allow for normal variations in manufacturing tolerances and test uncertainties. Quotes are always bid on the basis of "factory new and clean" performance without allowance for degradation in performance with usage. Contract language usually specifies a limit in operating time before performance testing must be conducted.

Typically, there is a margin of 0.5 to 1% on power and heat rate ratings. This explains why slightly better performance than expected may initially be realized.

Other factors that usually enter a project price quote include number of units ordered (i.e., quantity discounts), scope of equipment supply, site-specific requirements, duty cycle, geographic location and OEM's local market share position.

Variation in currency valuations can also play a significant role depending on which countries (i.e., currencies) are involved in the gas turbine's manufacture, purchase, and installation.

Gas turbine gensets designed for onshore oil and gas pipeline operation typically are priced around 10% higher than industrial or utility power plants. That is due to the cost of compliance with special packaging and safety requirements such as found in API specifications.

Offshore platform gas turbine packages command an additional price premium to cover costs such as specialized mountings and housing, marine-resistant coatings or ultra-efficient intake filter systems designed to handle salt-water laden air.

Benchmark. This reference section of the GTW Handbook serves as a benchmarking tool for assessing the equipment cost of different size and type plants.

To allow for uncertainties, the estimated budget prices should be treated as having a plus or minus 10% range of accuracy.

The data plot and best-fit curve show the strong relationship of cost to unit size, especially with smaller units where the effect of size is most pronounced. 2MW plant may be priced at around \$800 per kW compared to \$500 per kW for a 10MW plant.

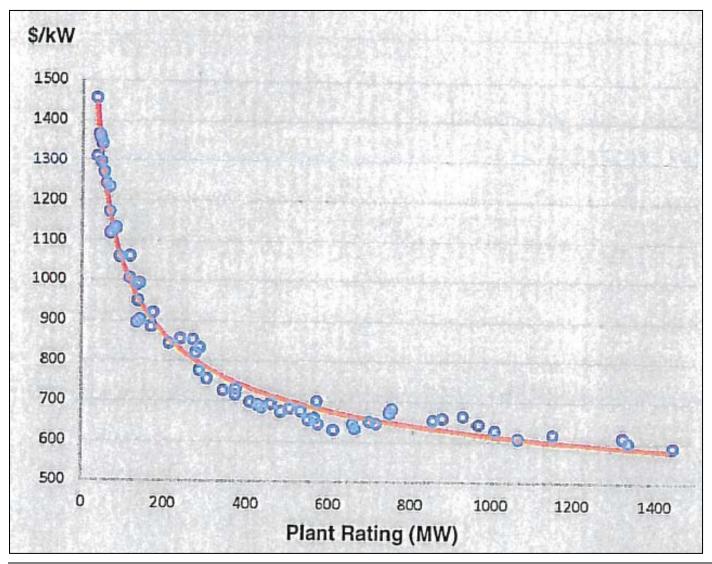
From around 20MW to 100MW cost per kW falls less steeply, from around \$500/kW to \$300/kW. This is displays the economies of scale which allow OEMs to reduce manufacturing costs (per kW) as unit physical size and power ratings increase.

Beyond 100MW, the \$ per kW trend flattens, but still continues to decrease down to around \$200/kW, or lower, for the largest G, H and J class units. Substantially lower \$/kW prices (10%-20%) may be observed for these units, compared to earlier Fclass technology.

This is despite the higher cost of more exotic materials, coatings and cooling techniques needed for machines operating in the 2700°F to 2900°F firing temperatures range, and is the apparent result of the significant gains in power output achieved with these large 400-500MW-class units.

Data spread. Note that the spread in the data of comparably rated units is due partly to effect of 50Hz vs. 60Hz direct drive machines, where the latter are more compact (increased power density) due to higher engine operating speed, and to differences in design technology (aero vs frame machines).

Aeroderivative units cost considerably more than heavy duty units. Also, note that the data plot excludes the LMS100 series since their inclusion of an intercooler puts them in their own price class (see table) where a premium is paid for even higher efficiency than the typical aeroderivative genset.


Regardless of gas turbine design and rating, however, remember that the cost of engineering, construction services and other project costs can add from 60% to 100%, and more, to the cost of the equipment alone.

For rough estimates, a useful rule of thumb is to double the equipment price for estimating total installed costs.

GAS TURBINE PRICING & PROJECT COSTS

GAS TURBINE PRICING - from the 2018 Gas Turbine Handbook[©] (\$USD)

Combined-Cycle (CCGT) Prices – approximately the project cost for a "reference plant" without typical options and site specific factors.

2018 Combined Cycle Plant Prices

Scope of supply, engineering and construction factors that enter into combined cycle plant equipment pricing

How much does a combined cycle plant cost? Broadly speaking, it all depends on plant size and scope, and on engineering tradeoffs for the design and performance optimization for specific application and site location.

GTW's combined cycle plant prices are based on standard barebones plants designed for single-fuel operation (gas-only) with conservative steam cycle design and without HRSG duct firing or other performance enhancing options.

The prices are quoted in US dollars FOB factory for EPC turnkey scope, including major equipment supply, plant engineering and construction. They do not cover transportation, project-specific options, owner's project costs or project contingencies.

Except for some individual cases, where new information from the marketplace has indicated otherwise, this year's projected combined cycle plant prices reflect a slight upward trend (~ 3%) compared to last year.

This is based on a general uptick noted in the widely recognized HIS/ CERA Power Projects Cost Index (see www.ihs.com/info/cera/ihsindexes/).

However, with the forecasted slowing of growth of gas-fired power generation, particularly in North America, and the over-capacity in large gas turbine manufacturing space, the pricing trend for larger combined cycle plants may very well turn downward in the near term.

With GTW prices quoted in US dollars, some year-to-year variation may also be attributed to fluctuation in the international value of the dollar in different markets. After a general strengthening of the dollar in 2015-2017, the value of the dollar has been relatively flat during the current period.

Equipment scope. Limited to minimum scope of supply for plants designed around one or more gas turbine gensets, one or more matching HRSGs (without SCR or CO catalyst for emissions reduction), single steam turbine genset with water-cooled condenser and mechanical draft cooling tower, integrated plant controls. Major equipment includes:

• Gas turbine. Skid mounted single-fuel unit with acoustic enclosure for outdoor installation, with standard starting and control systems. Includes standard mechanical and electrical auxiliaries normally supplied with simple cycle gas turbine package (no inlet air chilling or de-icing).

• Steam turbine. Condensing subcritical design, with single or dual-pressure levels for small plants, triple-pressure levels with reheat for large plants. Axial or radial exhaust, steam bypass and controls, enclosure, and watercooled condenser. Includes all valves and controls (typically hydraulic).

• Unfired HRSG. Heat recovery steam generator for outdoor installation, along with ductwork and short exhaust stack with silencing. Dual or triple-pressure reheat units as dictated by gas turbine and steam turbine size and technology.

• Generator. Air-cooled generators for small gas turbines; hydrogen cooled for larger units. Large aircooled generators for combined cycle application typically use enclosed water-to-air cooling (TEWAC) design. Neutral grounding cubicle and bus to main breaker included with generator packages.

• Control system. Distributed control system (DCS) for integrating gas turbine, HRSG and steam turbine controls with overall combined cycle plant control and operation. Balance of plant. Standard balanceof-plant equipment for combined cycle plant construction and operation covers:

• Mechanical auxiliaries. Critical water handling systems with pumps and piping for boiler feed water, condenser cooling water and condensate.

• Electrical auxiliaries. Auxiliary power transformers and switchgear, voltage regulators, bus and breakers needed for plant operation. Main stepup transformers (one for each generator) for connecting plant output to the utility substation are excluded. Includes minimal control room installation.

• Engineering and construction. Allowance is made in EPC costs for plant design and engineering, foundations and installation of all equipment assuming non-union labor.

Excluded options. Popular customer-specified options considered outside combined cycle budget prices for a bare-bones combined cycle plant:

• Bypass stack. Allows independent operation of the gas turbine in simple cycle mode for quick start and flexible dispatch; option includes a mechanical damper in exhaust ducting to redirect flow.

• Inlet cooling. Evaporative and mechanical chilling systems that can boost plant output by up to 10% at 90°F hot day and 30% relative humidity operation.

• Duct firing. Supplementary duct firing to increase steam turbine output; also requires upgrades in steam and water handling systems.

• Catalysts. CO and SCR catalytic section for HRSG (to limit emissions) plus associated ammonia storage and feed systems.

• Back-up fuel. Storage and delivery of liquid fuel for back-up to natural

gas supply. Usually includes fuel unloading station and alternative provisions for NOx control, such as water injection.

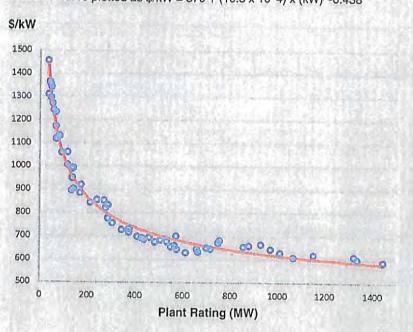
Boundary limits. The defined scope of supply narrowly sets boundary limits such that they do not include utility grid interconnections, transmission lines, natural gas fuel pipelines, or service/access roads external to the plant site.

Within the plant site, such project specific balance-of-plant equipment such as fuel gas booster compressors, water treatment systems, waste water systems and cooling towers are also excluded.

Price estimates reflect overnight costs and exclude time-dependent costs such as escalation and interest during construction and highly variable project-specific owner expenses such as land, plant site preparation, project development, financing, permits, insurance, taxes, etc.

Nor do they cover the "first fill" of operating consumables such as lube oil, chemicals, catalysts, special tooling and replacement parts and spares, which, although not a significant percentage of total costs, is worth noting by cost estimators.

Pricing scope. GTW's budget cost estimates for combined cycles are based on OEM reference plant designs and EPC contractor costs. They include cost of equipment and construction, but exclude customized EPC services, project-specific options and owner's project costs.


In the real world, total plant costs for combined cycle plants powered by identical gas turbines can vary by as much as 25% depending on differences in engineering, design choices and add-on plant options and facilities.

Marketplace plant price quotes are invariably higher than GTW estimated budget prices. Result of extended scope of supply and project-specific costs related to site location and greater project complexity.

Given the uncertainty on scope of

2018 Combined Cycle Plants

Pricing data for combined cycle plants. "Best Fit" curve plotted as \$/kW = 370 + (10.3 x 10^4) x (kW)^-0.438

supply, even for a bare bones plant, we attach a plus or minus accuracy of 15% to the estimated price of combined cycle plants.

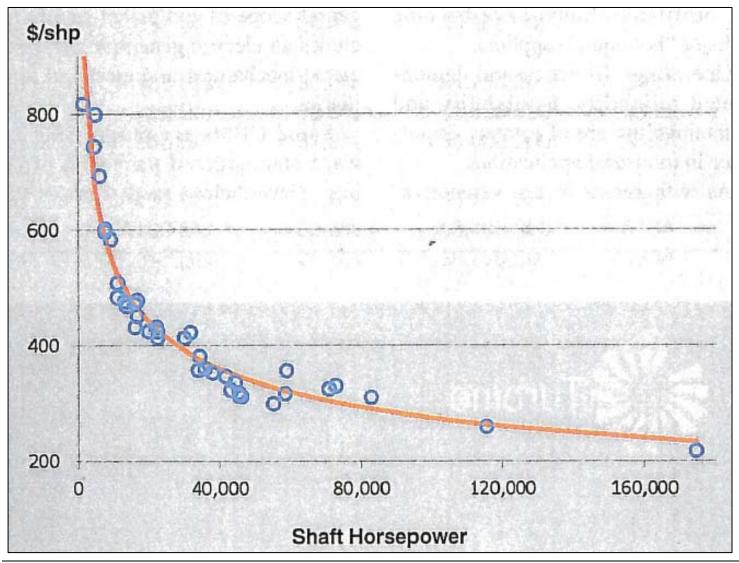
On the accompanying tables, combined cycle plant power and efficiency values are based on OEM ratings for optimized reference plant designs at ISO standard (59°F ambient and sea level) site conditions.

Size matters. As one might expect, prices for combined cycle power plants strongly exhibit the cost advantages of economies of scale.

The plot of combined cycle plant price versus power output shows how \$-per-kW prices sharply decrease with increasing plant size, although they level off at the upper end of the size spectrum. (Note: the \$/kW values are based on the net plant power ratings as listed in the performance specs section. As described there, some variation in these ratings exists depending on whether the OEM has accounted for plant auxiliary loads in the data.)

Compared to simple cycle plants, the leveling off in the price vs. size curve is delayed somewhat with combined cycle plants due to the large percentage of total plant cost attributed to the steam bottoming cycle and balance-of-plant equipment.

There is also an associated rise in the cost of more advanced steam turbine cycle equipment to match advanced technology gas turbine designs for new generation combined cycle plants in the 500MW-plus size that operate at better than 60% net plant efficiencies.


On the gas turbine side, new materials and manufacturing processes (such as single crystal and directionally solidified castings) and thermal barrier coatings for nozzles and blades to withstand higher firing temperature, add substantially to costs. However, this is countered to a large extent, and even overcome, by the large gains in power output with the latest technology advances.

The global growth in wind power and solar generation has also spurred the introduction of costly upgrades and more flexible gas and steam turbine designs for combined cycles capable of fast startup and ramping, operational flexibility and high part-load efficiencies and emissions control.

GAS TURBINE PRICING & PROJECT COSTS

GAS TURBINE PRICING - from the 2018 Gas Turbine Handbook[®] (\$USD)

Mechanical Drive Gas Turbine Prices – gas turbine only and does not include driven equipment nor, the total "project cost".

Jim Noordermeer, P.Eng. Noord Power Consulting Inc. 2018 GTEN Fall Workshop - Ottawa Gas Turbine Pricing & Project Costs

2018 Mechanical Drive Prices

Scope of supply and engineering factors that enter into skid-mounted mechanical drive equipment pricing

GTW's mechanical drive prices are based on the typical supply scope of packaged gas-only (not dual fuel) gas turbine prime movers designed to meet the widely varying demands of industrial applications.

Primary application is for compressor drives employed in the oil and gas and petrochemical industries, which are characterized by a lack of the standardization found in the power industry. This is generally reflected in their relatively higher unit prices.

Although a growing number of OEMs now offer complete packages that include the compressor, GTW pricing estimates are for the gas turbine package only (through the driveshaft flange).

Prices are quoted in US dollars FOB factory for a single or two-unit buy as opposed to a multi-station order. They represent equipment-only prices that do not include transportation, site engineering, installation or add-on options.

Compared to last year's price levels, which reflected the general downturn in oil and gas industry business since 2014, prices for 2018 show a slight upward (~3%) trend.

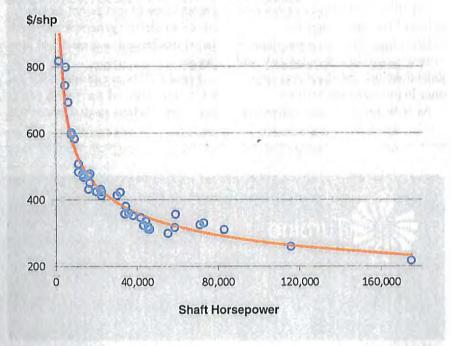

This is based on the current movement of recognized cost indexes for industrial equipment (ref: https:// www.ihs.com/info/cera/ihsindexes/0)

Chart shows trend of unit price (\$/ shp) with output rating demonstrating typical economies of scale with steep drop-off in price starting around 40,000 shp.

Equipment scope. Standard scope

2018 Mechanical Drives

Pricing data for mechanical drive prime movers. "Best Fit" plotted as: \$/shp = 8118 x (shp^-0.294)

of supply includes gas turbine, reduction gearbox (when needed), inlet air filter, auxiliaries, and dry low NOx combustion, when available:

• Packaged unit. Skid-mounted single-fuel gas turbine with driveshaft output coupling, starting motor (electric or hydraulic) and lube oil systems.

• Output gearbox. Parallel-shaft gearbox is usually standard for aero units. Epicyclic gearbox is more compact and efficient, but adds to the price. (Most heavy-frame gas turbines are direct drive.)

• Inlet and exhaust. Air inlet filter, ducting and silencer plus exhaust duct, silencer and stack. Options such as multi-stage inlet filtration, pulse-jet cleaning, anti-icing, air inlet chilling and water or steam injection for power augmentation are not included.

• Auxiliaries. Lube oil system (pump, cooler, etc), vibration monitoring, compressor washing, speed and temperature instrumentation, automated digital controls, typically including variable speed operation (for two-shaft designs), and fire protection systems.

Market factors. Estimated prices do not apply to large multi-unit orders (usually with phased delivery) where buyers gain bargaining leverage to negotiate sizeable discounts.

EXAMPLE ONLY FOR GTEN 2018 FALL WORKSHOP

EXAMPLE FICTITIOUS INDUSTRIAL CLIENT XYZ 7.5 MW GTG-HRSG COGENERATION PROJECT - OPTION 4 PROJECT BUDGETARY COST ESTIMATE - \$CAD (+/- 25%)

Project: 18-473 Date: Oct 23-18

	ECT BUDGETARY COST ESTIMATE - \$CAD (+/- 25%	/			Issue: 04
ITEM	DESCRIPTION	MAT'LS	LABOUR	TOTAL	
1.0	MAJOR EQUIPMENT & VENDOR-ENGINEERED S	YSTEMS - SU	PPLY ONLY		
1.1	Gas Turbine Generator Package	7,500,000			gas-fired; 4160 VAC; incl'g site-support
1.2	Heat Recovery Steam Generator	3,500,000			duct-fired single-pressure; incl'g site-support
1.3	Fuel Gas Compressors	450,000			
1.4	Generator Step-Up Transformer	225,000			4160V-27.6 kV
1.5	Auxiliary Supply Transformer	120,000			4160-600V
1.6	High-Voltage Switchgear & Breakers	175,000			4160V
1.7	Motor Control Centres (MCC)	75,000			600V
1.8	Distributed Control System (DCS)	450,000			Including programming & site-support
1.9	Pre-Engineered Building	350,000			40' x 65'
1.10	Relay Protection & Metering System	145,000			
1.11	HVAC & Ducting Systems	150,000			
	Totals - Section 1.0	13,140,000	0	13,140,000	
2.0	CIVIL & STRUCTURAL				
2.1	Site Prep, Area Hydrovac and/or Investigations	15,000	0	15,000	
2.2	Major Equipment Foundations	100,000	100,000	200,000	
2.3	Existing Building Demolitions	10,000	50,000	60,000	As required
2.4	Asbestos Removals	75,000		75,000	Subcontract
2.5	Acoustic Barrier Wall	45,000		45,000	Subcontract
2.8	Misc. Project Concrete, Grout, Steel, Fencing	25,000	10,000	35,000	Allowance (disc'd w/ potential contractor)
2.9	Support Steel & Mods in Boilerhouse	45,000	15,000	60,000	Allowance (disc'd w/ potential contractor)
	Totals - Section 2.0	315,000	175,000	490,000	
3.0	MECHANICAL				Riggers, Pipefitters, Welders & Millwrights
3.1	Maj. Equipment Erection & Installation	150,000	225,000	375,000	GTG, HRSG, Gas Comp'rs
3.2	Steam, Feedwater & Cond. Piping Int'con'tn	65,000	100,000	165,000	HRSG to-from boilerhouse
3,3	Natural Gas System	25,000	55,000	80,000	To new Big-Gas Metering & Regulation Station
3,4	Cooling Water Systems	18,500	24,000	42,500	
3.5	Instrument/Service Air System Interconnection	8,000	12,500	20,500	
3.6	Misc. Removals & Demolition	5,000	10,000	15,000	
3.7	Miscellaneous Mech Eqp'mnt, Insulation	10,000	12,000	22,000	Mat'ls & Labour
3.8	HVAC & Ducting Systems	150,000		150,000	Subcontract
	Totals - Section 3.0	431,500	438,500	870,000	

EXAMPLE ONLY FOR GTEN 2018 FALL WORKSHOP

EXAMPLE FICTITIOUS INDUSTRIAL CLIENT XYZ 7.5 MW GTG-HRSG COGENERATION PROJECT - OPTION 4 PROJECT BUDGETARY COST ESTIMATE - \$CAD (+/- 25%)

Project: 18-473 Date: Oct 23-18 Issue: 04

	DESCRIPTION	MAT'LS	LABOUR	TOTAL	Issue. 04
4.0	ELECTRICAL & INSTRUMENTATION				Electricians & Instrument Techs
4.1	Major Equipment Electrical & Controls Ins'tn	100,000	225,000	325,000	
4.2	Generator & TF Output Cabling	25,000	100,000	125,000	
4.3	Power, Instrumentation & Control Cabling	25,000	55,000	80,000	
4.4	DCS Installation & Tuning	10,000	60,000	70,000	
4.5	Winterization / Heat-Tracing	30,000	25,000	55,000	
4.6	Miscellaneous Elect Eqp'mnt, Mat'ls & Labour	25,000	20,000	45,000	
	Totals - Section 4.0	215,000	485,000	700,000	
5.0	PROJECT DIRECT & INDIRECT COSTS				
5.1	Site Legal Survey	15,000	0	15,000	Subcontract
5.2	Site Geotechnical Investigation	35,000	0	35,000	Subcontract
5.3	Project Detail-Design Engineering & Specification	45,000	700,000	745,000	
5.4	Site Engineering Support	15,000	50,000	65,000	Site eng'g presence / reviews during constr'tn
5.5	Construction Manager	15,000	125,000	140,000	
5.6	Permitting, Inspections & Related-Testing	90,000	0	90,000	
5.7	Electrical Interconnection Cost - CIA/CCA	250,000	0	250,000	
5.8	Gas Interconnection Cost	250,000	0	250,000	
5.9	Commissioning Manager, Eqp'mnt & Mat'ls	5,000	75,000	80,000	Power-Generation Commissioning Specialist
5.10	Trade Support Allow. for Commissioning	5,000	15,000	20,000	
5.11	First-Fills & Lubricants	20,000	0	20,000	Oils, greases, glycol, etc.
	Shipping & Freight Allowance	40,000	0	40,000	for sections 2.0 to 4.0
5.13	Contractor Site Indirects - Trailers & Facilities,	250,000	0	250,000	
	Supplies, Vehicles, Laydown Prep/Storage, Permits,				
	Bonds, etc.				
5.14	Contractor Site Supervision, Safety / QA /	50,000	100,000	150,000	Site Management & Admin Staff
	Environmental, Security & Admin				
5.15	Contractor Site Mob/De-Mob;	125,000	125,000	250,000	included above
	Rentals (Cranes & Lifts, Concrete Pumpers,				
	Portable Welders, Scaffolding);				
	Temporary Fencing, Safety Equipment, NDE,				
	Consumables, Environmental Man'gmnt				
	Totals - Section 5.0	1,210,000	1,190,000	2,400,000	

EXAMPLE ONLY FOR GTEN 2018 FALL WORKSHOP

EXAMPLE FICTITIOUS INDUSTRIAL CLIENT XYZ 7.5 MW GTG-HRSG COGENERATION PROJECT - OPTION 4 PROJECT BUDGETARY COST ESTIMATE - \$CAD (+/- 25%)

Project: 18-473 Date: Oct 23-18 Issue: 04

TROJE	13506. 04				
ITEM	DESCRIPTION	MAT'LS	LABOUR	TOTAL	
6.0	OWNER & RELATED COSTS				
6.1	Owner's Project Manag'mnt, Eng'g, Legal & Financial	Costs			by Owner
6.2	Spare Parts - Major Equipment				by Owner
6.3	Training				by Owner
6.4	Startup Fuel				by Owner
6.5	Letter of Credit				by Owner
6.6	Project Insurance (All-Risk and Boiler & Machinery)				by Owner
6.7	Interest During Construction (IDC)				by Owner
6.8	Contingency				by Owner
	Totals - Section 7.0	0	0	0	

SUMMARY / TOTALS	MAT'LS	LABOUR	TOTAL	[
1.0 - Maj. Equipment & Vendor Systems	13,140,000	0	13,140,000	
2.0 - Civil & Structural	315,000	175,000	490,000	I
3.0 - Mechanical	431,500	438,500	870,000	\$CAD
4.0 - Electrical & Instrumentation	215,000	485,000	700,000	+/- 25%
5.0 - Project Direct / Indirect Costs	1,210,000	1,190,000	2,400,000	Escalation 8
6.0 - Owner & Related Costs	0	0	0	I
TOTAL COST	15,311,500	2,288,500	17,600,000	